Skip to main content

Advertisement

Log in

Preparation and electrochemical property of TiO2/porous carbon composite cathode derived from waste tea leaves for electrocatalytic degradation of phenol

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The development of efficient and stable electrode materials is a cutting-edge method to improve electrocatalytic activity. The way of combination biomass-derived porous carbon and metal oxides is considered to be an effective strategy to improve the redox reaction. In this study, we selected tea as a biomass carbon source and synthesized 3D structure of tea porous carbon (TPC) using a template-free method. TiO2/TPC composite material was successfully prepared through one-step simple hydrothermal reaction without destroying the pore structure. The degradation effect of phenol and the yield of ·OH were used as the evaluation criteria for the electrocatalytic performance of composites. The results show that TiO2/TPC-1:2 (20) has an excellent phenol degradation effect (97.54%). The good degradation effect is based on the reasonable design of the structure of composite materials. This effective preparation strategy of composite maximizes the advantages of the pore structure of the material itself and creates a large number of good channels for electron transport. At the same time, the load of metal oxide can effectively promote more catalytic active sites, which has a certain significance for the preparation of porous carbon or porous carbon matrix composite materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ji J, Li XY, Xu J, Yang XY, Meng HS, Yan ZR (2018) Zn-Fe-rich granular sludge carbon (GSC) for enhanced electrocatalytic removal of bisphenol A (BPA) and Rhodamine B (RhB) in a continuous-flow three-dimensional electrode reactor (3DER). Electrochim Acta 284:587–596

    Article  CAS  Google Scholar 

  2. Duan W, Meng F, Cui H, Lin Y, Wang G, Wu J (2018) Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol Environ Safe 157:441–456

    Article  CAS  Google Scholar 

  3. Li D, Liu B, Sun H, Yao J, van Agtmaal S, Feng C (2019) Preparation and characterization of PFTS grafted alumina supported zirconia (ASZ) membrane for removal of phenol from aqueous solution. Appl Surf Sci 505:144608

    Article  Google Scholar 

  4. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288

    Article  CAS  PubMed  Google Scholar 

  5. Du Y, Zhou M, Lei L (2006) Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. J Hazard Mater 136:859–865

    Article  CAS  PubMed  Google Scholar 

  6. Wang F, Hu Y, Guo C, Huang W, Liu CZ (2012) Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour Technol 110:120–124

    Article  CAS  PubMed  Google Scholar 

  7. Mandal A, Das SK (2019) Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace. Chem Eng J 7:103259

    CAS  Google Scholar 

  8. Perez M, Torrades F, Domenech X, Peral J (2002) Fenton and photo-Fenton oxidation of textile effluents. Water Res 36:2703–2710

    Article  CAS  PubMed  Google Scholar 

  9. Turhan K, Uzman S (2008) Removal of phenol from water using ozone. Desalination 229:257–263

    Article  CAS  Google Scholar 

  10. Zhang M, Tay JH, Qian Y, Gu XS (1997) Comparison between anaerobic-anoxic-oxic and anoxic-oxic systems for coke plant wastewater treatment. J Environ Eng 123:876–883

    Article  CAS  Google Scholar 

  11. Li Z, Chen J, Yang J, Su Y, Fan X, Wu Y, Wang ZL (2015) β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ Sci 8:887–896

    Article  Google Scholar 

  12. Ma W, Cheng Z, Gao Z, Wang R, Wang B, Sun Q (2014) Study of hydrogen gas production coupled with phenol electrochemical oxidation degradation at different stages. Chem Eng J 241:167–174

    Article  CAS  Google Scholar 

  13. Ding H, Wu Y, Zou B, Lou Q, Zhang W, Zhong J, Dai G (2016) Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J Hazard Mater 307:350–358

    Article  CAS  PubMed  Google Scholar 

  14. Pourakbar M, Moussavi G, Shekoohiyan S (2017) Homogenous VUV advanced oxidation process for enhanced degradation and mineralization of antibiotics in contaminated water. Ecotoxicol Environ Safe 125:72–77

    Article  Google Scholar 

  15. Zhang Y, Zhuang Y, Geng J, Ren H, Xu K, Ding L (2016) Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Sci Total Environ 550:184–191

    Article  CAS  PubMed  Google Scholar 

  16. Lin Y, Yu J, Xing Z, Guo X, Yu X, Tang B, Zou J (2016) Enhanced generation of H2O2 and radicals on Co9S8/partly-graphitized carbon cathode for degradation of bio-refractory organic wastewater. Electrochim Acta 213:341–350

    Article  CAS  Google Scholar 

  17. Aquino JM, Rocha-Filho RC, Ruotolo LA, Bocchi N, Biaggio SR (2014) Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem Eng J 251:138–145

    Article  CAS  Google Scholar 

  18. Aquino JM, Rocha-Filho RC, Bocchi N, Biaggio SR (2013) Electrochemical degradation of the Disperse Orange 29 dye on a β-PbO2 anode assessed by the response surface methodology. Chem Eng J 1:954–961

    CAS  Google Scholar 

  19. Velazquez-Pena S, Sáez C, Canizares P, Linares-Hernández I, Martínez-Miranda V, Barrera-Díaz C, Rodrigo MA (2013) Production of oxidants via electrolysis of carbonate solutions with conductive-diamond anodes. Chem Eng J 230:272–278

    Article  CAS  Google Scholar 

  20. Zhang G, Wang S, Zhao S, Fu L, Chen G, Yang F (2011) Oxidative degradation of azo dye by hydrogen peroxide electrogenerated in situ on anthraquinonemonosulphonate/polypyrrole composite cathode with heterogeneous CuO/γ-Al2O3 catalyst. Appl Catal B Environ 106:370–378

    Article  CAS  Google Scholar 

  21. Zhou P, Wan J, Wang X, Chen J, Gong Y, Xu K (2019) Three-dimensional hierarchical porous carbon cathode derived from waste tea leaves for the electrocatalytic degradation of phenol. Langmuir 35:12914–12926

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Wang L, Wan J, Zhou P, Chen J, Gong Y, Xu K (2019) Corrugated paper-based activated carbon as a bifunctional material for the electrocatalytic degradation and high-performance supercapacitors. J Electrochem Soc 166:A2199–A2208

    Article  CAS  Google Scholar 

  23. Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3:18154–18162

    Article  CAS  Google Scholar 

  24. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050

    Article  PubMed  Google Scholar 

  25. Liu Y, Harnisch F, Fricke K, Schröder U, Climent V, Feliu JM (2010) The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens Bioelectron 25:2167–2171

    Article  CAS  PubMed  Google Scholar 

  26. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  27. Zhao X, Li A, Quan X, Chen S, Yu H, Zhang S (2020) Efficient electrochemical reduction of nitrobenzene by nitrogen doped porous carbon. Chemosphere 238:124636

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Ma S, Cheng L, Wu Q (2015) Egg yolk-derived three-dimensional porous carbon for stable electrochemical supercapacitors. Mater Lett 139:429–432

    Article  CAS  Google Scholar 

  29. Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Umar A (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

    Article  CAS  PubMed  Google Scholar 

  30. Paul S, Samdarshi SK (2011) A green precursor for carbon nanotube synthesis. New Carbon Mater 26:85–88

    Article  CAS  Google Scholar 

  31. Dhelipan M, Arunchander A, Sahu AK, Kalpana D (2017) Activated carbon from orange peels as supercapacitor electrode and catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Saudi Chem Soc 21:487–494

    Article  CAS  Google Scholar 

  32. Muzolf M, Szymusiak H, Gliszczyńska-Świgło A, Rietjens IM, Tyrakowska BE (2008) pH-dependent radical scavenging capacity of green tea catechins. J Agric Food Chem 56:816–823

    Article  CAS  PubMed  Google Scholar 

  33. Hu CJ, Gao Y, Liu Y, Zheng XQ, Ye JH, Liang YR, Lu JL (2016) Studies on the mechanism of efficient extraction of tea components by aqueous ethanol. Food Chem 194:312–318

    Article  CAS  PubMed  Google Scholar 

  34. Li D, Jia J, Zhang Y, Wang N, Guo X, Yu X (2016) Preparation and characterization of nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant. J Hazard Mater 315:1–10

    Article  CAS  PubMed  Google Scholar 

  35. Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Niu L (2009) One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20:455602

    Article  PubMed  Google Scholar 

  36. Yu J, Yu X (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42:4902–4907

    Article  CAS  PubMed  Google Scholar 

  37. Choi YJ, Seeley Z, Bandyopadhyay A, Bose S, Akbar SA (2007) Aluminum-doped TiO2 nano-powders for gas sensors. Sens Actuators B-Chem 124:111–117

    Article  CAS  Google Scholar 

  38. Yu J, Hai Y, Cheng B (2011) Enhanced photocatalytic H2-production activity of TiO2 by Ni (OH)2 cluster modification. J Phys Chem C 115:4953–4958

    Article  CAS  Google Scholar 

  39. Guo X, Wan J, Yu X, Lin Y (2016) Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium. Chemosphere 164:421–429

    Article  CAS  PubMed  Google Scholar 

  40. Li D, Guo X, Song H, Sun T, Wan J (2018) Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium. J Hazard Mater 351:250–259

    Article  CAS  PubMed  Google Scholar 

  41. Jin T, Wan J, Dai C, Qu S, Shao J, Ma F (2018) A simple method to prepare high specific surface area reed straw activated carbon cathodes for in situ generation of H2O2 and .OH for phenol degradation in wastewater. J Appl Electrochem 48:343–353

    Article  CAS  Google Scholar 

  42. Heng I, Low FW, Lai CW, Juan JC, Amin N, Tiong SK (2019) High performance supercapattery with rGO/TiO2 nanocomposites anode and activated carbon cathode. J Alloys Compd 796:13–24

    Article  CAS  Google Scholar 

  43. Shao J, Ma F, Wu G, Dai C, Geng W, Song S, Wan J (2017) In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem Eng J 321:301–313

    Article  CAS  Google Scholar 

  44. Tan J, Wang X, Hou W, Zhang X, Liu L, Ye J, Wang D (2019) Fabrication of Fe3O4@ graphene/TiO2 nanohybrid with enhanced photocatalytic activity for isopropanol degradation. J Alloys Compd 792:918–927

    Article  CAS  Google Scholar 

  45. Yang C, Hao SJ, Dai SL, Zhang XY (2017) Nanocomposites of poly (vinylidene fluoride)-controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor. Carbon 117:301–312

    Article  CAS  Google Scholar 

  46. Wells RK, Badyal JPS, Drummond IW, Robinson KS, Street FJ (1993) A comparison of plasma-oxidized and photo-oxidized polystyrene surfaces. Polymer 34:3611–3613

    Article  CAS  Google Scholar 

  47. Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22

    Article  Google Scholar 

  48. Strzemiecka B, Voelkel A, Donate-Robles J, Martín-Martínez JM (2014) Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis. Appl Surf Sci 316:315–323

    Article  CAS  Google Scholar 

  49. Chen J, Wei JS, Zhang P, Niu XQ, Zhao W, Zhu ZY, Xiong HM (2017) Red-emissive carbon dots for fingerprints detection by spray method: coffee ring effect and unquenched fluorescence in drying process. ACS Appl Mater Interfaces 9:18429–18433

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Zhou J, Fang H, Sham TK, Karunakaran C, Lu Y, Hitchcock AP (2011) Effect of humidity on individual SnO2 coated carbon nanotubes studied by in situ STXM. J Electron Spectrosc 184:296–300

    Article  CAS  Google Scholar 

  51. Yan Y, Hao B, Wang D, Chen G, Markweg E, Albrecht A, Schaaf P (2013) Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J Mater Chem A 1:14507–14513

    Article  CAS  Google Scholar 

  52. Dai J, Tian Q, Sun Q, Wei W, Zhuang J, Liu M, Fan M (2019) TiO2-alginate composite aerogels as novel oil/water separation and wastewater remediation filters. Compos Part B-Eng 160:480–487

    Article  CAS  Google Scholar 

  53. Shahzad A, Rasool K, Nawaz M, Miran W, Jang J, Moztahida M, Lee DS (2018) Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem Eng J 349:748–755

    Article  CAS  Google Scholar 

  54. Hu ET, Liu XX, Cai QY, Yao Y, Zang KY, Yu KH, Zhang RJ (2017) Tunable optical properties of co-sputtered Ti-SiO2 nanocomposite thin films. Opt Mater Express 7:2387–2395

    Article  CAS  Google Scholar 

  55. Luo H, Li C, Wu C, Zheng W, Dong X (2015) Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode. Electrochim Acta 186:486–493

    Article  CAS  Google Scholar 

  56. Li D, Sun T, Wang L, Wang N (2018) Enhanced electro-catalytic generation of hydrogen peroxide and hydroxyl radical for degradation of phenol wastewater using MnO2/Nano-G|Foam-Ni/Pd composite cathode. Electrochim Acta 282:416–426

    Article  CAS  Google Scholar 

  57. Wang N, Li D, Yu L, Yu XJ, Sun TY (2015) Preparation of RuO2/nano-graphite cathode for electrocatalytic degradation of phenol. Int J Electrochem Sci 10:9824–9836

    CAS  Google Scholar 

  58. Luo J, Zhang H, Li Z (2018) Highly efficient degradation of phenol from wastewater via an electro-catalytic oxidation approach with a CeO2–CuO cathode. RSC Adv 8:15167–15172

    Article  CAS  Google Scholar 

  59. Yu X, Sun T, Wan J (2014) Preparation for Mn/nanographite materials and study on electrochemical degradation of phenol by Mn/nanographite cathodes. J Nanosci Nanotechnol 14:6835–6840

    Article  PubMed  Google Scholar 

  60. Wang W, Yu J, Zou J, Yu X (2016) Mechanism for enhancing biodegradability of antibiotic pharmacy wastewater by in situ generation of H2O2 and radicals over MnOx/nano-G/2-EAQ/AC cathode. Electrochim Acta 191:426–434

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Heilongjiang Natural Science Foundation (B2017011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafeng Wan.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1 (6052 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Wan, J., Wang, X. et al. Preparation and electrochemical property of TiO2/porous carbon composite cathode derived from waste tea leaves for electrocatalytic degradation of phenol. J Appl Electrochem 51, 653–667 (2021). https://doi.org/10.1007/s10800-020-01527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01527-9

Keywords

Navigation