Skip to main content
Log in

Roles of organic and inorganic additives on the surface quality, morphology, and polarization behavior during nickel electrodeposition from various baths: a review

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

During the hydrometallurgical processing of nickel from raw materials, the leach liquors are found to be contaminated with several impurities. These impurities in the electrolytic cell affect the deposition characteristics as well as the kinetics and mechanism of nickel electrodeposition process resulting in lower current efficiency (CE) and poor nickel deposits. In order to improve the quality of the nickel deposits, it is imperative to use organic additives in the nickel plating bath to improve the structural, mechanical, and morphological properties of the deposits. Furthermore, it is usually observed that in spite of various purification techniques like cementation and solvent extraction, metals obtained at the cathode are usually contaminated with inorganic impurities. This review thus presents a comprehensive overview of some important studies and investigations performed on various inorganic and organic additives employed in nickel electrodeposition processes from various baths such as Watts, sulfate, acetate, formamide, lactate, and baths containing ionic liquids. The presence of metallic (inorganic) impurities in industrial electrolytes is very common. Most of these impurities affect the deposit’s characteristics, CE, deposition overvoltage, and cathode purity. Addition of inorganic cations such as Al3+, Mg2+, Mn2+, and Zn2+ did not have a significant effect on the CE; nevertheless, the physical appearance and crystallographic orientation of nickel deposits were significantly affected. Organic additives are usually added to the nickel electrolytic bath to counter the harmful effects of these metallic impurities entrained in the bath, where they also affect the growth and crystal building of the deposits through their adsorption onto the cathode surface. Most of these additives act as hydrogen inhibitors, crystal growth modifiers, brighteners, levelers, wetting agents, and stress reducers, and hence, their appropriate addition was important for the formation of fine-grained, smooth, and compact deposits. This review demonstrates that the quality of the nickel deposit was strongly affected if the concentration of the inorganic impurity in the nickel bath exceeded the tolerance limit. From this review article, the roles of various organic additives as a brightener, leveler, and antipitting agent, etc. in the Ni plating bath could be established, and these additives would play a significant role in the formation of bright, smooth, and coherent nickel deposits obtained during hydrometallurgical processing of laterite and sulfide ores in the metallurgical industry.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mohanty U-S et al (2005) Electrodeposition of nickel in the presence of Al3+ from sulfate baths. J Appl Electrochem 35(6):545–549

    Article  CAS  Google Scholar 

  2. Küzeci E, Kammel R, Gogia S (1994) Effects of metallic and D2EHPA impurities on nickel electrowinning from aqueous sulphate baths. J Appl Electrochem 24(8):730–736

    Article  Google Scholar 

  3. Küzeci E, Kammel R, Gogia S (1992) Electrowinning of nickel from aqueous sulphate bath in the presence of metallic and LIX64N impurities. Miner Process Extr Metull Rev 10(1):57–69

    Article  Google Scholar 

  4. Boto K (1975) Organic additives in zinc electroplating. Electrodepos Surf Treat 3(2):77–95

    Article  CAS  Google Scholar 

  5. Gauvin W, Winkler C (1952) The effect of chloride ions on copper deposition. J Electrochem Soc 99(2):71–77

    Article  CAS  Google Scholar 

  6. Khorsand S, Raeissi K, Golozar M (2011) Effect of oxalate anions on zinc electrodeposition from an acidic sulphate bath. J Electrochem Soc 158(6):D377–D383

    Article  CAS  Google Scholar 

  7. Shriram S et al (2000) Electrodeposition of nanocrystalline nickel—a brief review. Trans IMF 78(5):194–197

    Article  CAS  Google Scholar 

  8. Agboola O, Sadiku RE, Biotidara OF (2012) The properties and the effect of operating parameters on nickel plating. Int J Phys Sci 7(3):349–360

    Google Scholar 

  9. Bless D (2000) A review of electroplating nickel bath life extension, nickel recovery & copper recovery from nickel baths. Plat Surf Finish 87(4):72–78

    CAS  Google Scholar 

  10. Sorour N et al (2017) A review of organic additives in zinc electrodeposition process (performance and evaluation). Hydrometallurgy 171:320–332

    Article  CAS  Google Scholar 

  11. Oniciu L, Mureşan L (1991) Some fundamental aspects of levelling and brightening in metal electrodeposition. J Appl Electrochem 21(7):565–574

    Article  CAS  Google Scholar 

  12. Torabinejad V et al (2017) Electrodeposition of Ni-Fe alloys, composites, and nano coatings–a review. J Alloy Compd 691:841–859

    Article  CAS  Google Scholar 

  13. Sulcius A et al (2013) Influence of different electrolysis parameters on electrodeposition of γ-and α-Mn from pure electrolytes—a review with special reference to Russian language literature. Hydrometallurgy 137:33–37

    Article  CAS  Google Scholar 

  14. Walsh F, Low C (2016) A review of developments in the electrodeposition of tin-copper alloys. Surf Coat Technol 304:246–262

    Article  CAS  Google Scholar 

  15. Tripathy B et al (2001) Effect of Mg2+ , Li+ , Na+ and K+ on the electrocrystallization of nickel from aqueous sulfate solutions containing boric acid. J Appl Electrochem 31(5):573–577

    Article  CAS  Google Scholar 

  16. Wieber M (2013) Sb organoantimony compounds Part 4: compounds of Pentavalent antimony with three Sb–C bonds. Springer, New York

    Google Scholar 

  17. Charles B (1925) Method of electroplating musical instruments and improved electroplated musical instruments. US Patent 1,548,432, 4 Aug 1925

  18. De LHK (1955) Method of producing an electroplate of nickel on magnesium and the magnesium-base alloys. US Patent 2,728,720, 27 Dec 1955

  19. Chen X-B et al (2013) Corrosion-resistant electrochemical plating of magnesium (Mg) alloys. Corrosion prevention of magnesium alloys. Elsevier, Amsterdam, pp 315–346

    Chapter  Google Scholar 

  20. Henry B (1950) Electrodeposition of nickel from an acid bath. US Patent 2,513,280, 4 July 1950

  21. Sard R, Leidheiser H, Ogburn F (1975) Properties of electrodeposits, their measurement and significance. In: Corrosion, electrodeposition, and electronics divisions, electrochemical society. The Electrochemical Society, Inc., Princeton

  22. Lins V et al (2011) Effect of nickel and magnesium on zinc electrowinning using sulfate solutions. Braz J Chem Eng 28(3):475–482

    Article  CAS  Google Scholar 

  23. Walters J (1903) Electroplating apparatus. US Patent 2,708,445, 17 May 1955

  24. Yang H et al (2014) A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D. Corros Sci 79:41–49

    Article  CAS  Google Scholar 

  25. Pranas B (1961) Chemical nickel plating of magnesium and its alloys. US Patent 2,983,634, 9 May 1961

  26. Barceloux DG, Barceloux D (1999) Nickel. J Toxicol Clin Toxicol 37(2):239–258

    Article  CAS  PubMed  Google Scholar 

  27. Jing L, Yang Q-H, Zhang Z (2010) Effects of additives on nickel electrowinning from sulfate system. Trans Nonferr Metals Soc China 20:s97–s101

    Article  Google Scholar 

  28. Li J et al (2006) The electroless nickel-plating on magnesium alloy using NiSO4·6H2O as the main salt. Surf Coat Technol 200(9):3010–3015

    Article  CAS  Google Scholar 

  29. Nicol M, Tjandrawan V (2014) The effects of thiosulfate ions on the deposition of cobalt and nickel from sulfate solutions. Hydrometallurgy 150:34–40

    Article  CAS  Google Scholar 

  30. Gogia S, Das S (1988) The effects of Mg2+ , Mn2+ , Zn2+ , and Al3+ on the nickel deposit during electrowinning from sulfate bath. Metall Trans B 19(6):823–830

    Article  Google Scholar 

  31. Wu G et al (2004) Electrodeposited Co–Ni–Al2O3 composite coatings. Surf Coat Technol 176(2):157–164

    Article  CAS  Google Scholar 

  32. Dennis J, Fuggle J (1970) The Effect of metallic contamination on electrodeposited nickel: part II—appearance and surface topography. Trans IMF 48(1):75–82

    Article  CAS  Google Scholar 

  33. Walker R (1974) Structure and properties of electrodeposited metals. Int Metall Rev 19(1):1–20

    Article  CAS  Google Scholar 

  34. Schwartz M, Arcos C, Nobe K (2003) Direct & pulse current electrodeposition of iron group thin film alloys containing vanadium. Plat Surf Finish 90(6):46–51

    Google Scholar 

  35. Cooper WC et al (1997) In: Proceedings of the nickel–cobalt 97th international symposium: August 17–20, 1997, Sudbury, Ontario, Canada. Vol. 3. Canadian Institute of Mining, Metallurgy and Petroleum

  36. Banerjee B, Goswami UA (1959) Effects of chloride on the orientation of nickel deposits. J Electrochem Soc 106(7):590–592

    Article  CAS  Google Scholar 

  37. O’keefe TJ, Holm M (2000) The anomalous behavior of Al3+ in nickel electrowinning from sulfate electrolytes. Metall Mater Trans B 31(6):1203–1211

    Article  Google Scholar 

  38. Holm M, O’keefe T (2000) Electrolyte parameter effects in the electrowinning of nickel from sulfate electrolytes. Miner Eng 13(2):193–204

    Article  CAS  Google Scholar 

  39. Gogia S, Das S (1991) The effect of Co2+ , Cu2+ , Fe2+ and Fe3+ during electrowinning of nickel. J Appl Electrochem 21(1):64–72

    Article  CAS  Google Scholar 

  40. Mohanty U-S et al (2008) Role of Mo 6 + during nickel electrodeposition from sulfate solutions. J Appl Electrochem 38(2):239–244

    Article  CAS  Google Scholar 

  41. Mohanty U et al (2002) Effect of Cd2+ on the electrodeposition of nickel from sulfate solutions. Part I: Current efficiency, surface morphology and crystal orientations. J Electroanal Chem 526(1–2):63–68

    Article  CAS  Google Scholar 

  42. Mohanty U et al (2002) Effect of Cr3+ on the electrodeposition of nickel from acidic sulfate solutions. Miner Eng 15(7):531–537

    Article  CAS  Google Scholar 

  43. Alfantazi A, Shakshouki A (2002) The effects of chloride ions on the electrowinning of nickel from sulfate electrolytes. J Electrochem Soc 149(10):C506–C510

    Article  CAS  Google Scholar 

  44. Srivastava H, Tikoo P (1987) Effect of cobalt, cadmium and ammonium ions on the electrodeposition of nickel pour dimethylsulfoxide/nickel acetate. Plat Surf Finish 74(2):67–70

    CAS  Google Scholar 

  45. Tsuru Y, Nomura M, Foulkes F (2000) Effects of chloride, bromide and iodide ions on internal stress in films deposited during high speed nickel electroplating from a nickel sulfamate bath. J Appl Electrochem 30(2):231–238

    Article  CAS  Google Scholar 

  46. Geneidy A, Koehler W, Machu W (1959) The effect of magnesium salts on nickel plating baths. J Electrochem Soc 106(5):394–403

    Article  CAS  Google Scholar 

  47. López J et al (2017) Samarium additive effect onto the nickel electrodeposition process. J Electrochem Soc 164(7):D524–D531

    Article  CAS  Google Scholar 

  48. Tripathy B et al (2001) Effect of organic extractants on the electrocrystallization of nickel from aqueous sulphate solutions. J Appl Electrochem 31(3):301–305

    Article  CAS  Google Scholar 

  49. Ernst D, Amlie R, Holt M (1955) Electrodeposition of molydenum alloys from aqueous solutions. J Electrochem Soc 102(8):461–469

    Article  CAS  Google Scholar 

  50. Yin KM, Lee CC (1997) Effect of ferrous ion concentration on the electrodeposition of iron–nickel alloys. J Chem Technol Biotechnol 70(4):337–342

    Article  CAS  Google Scholar 

  51. Brillas E, Rambla J, Casado J (1999) Nickel electrowinning using a Pt catalysed hydrogen-diffusion anode. Part I: Effect of chloride and sulfate ions and a magnetic field. J Appl Electrochem 29(12):1367–1376

    Article  CAS  Google Scholar 

  52. Sezer E, Ustamehmetoğlu B, Katirci R (2014) Effects of functional groups of triple bonds containing molecules on nickel electroplating. Turk J Chem 38(5):701–715

    Article  CAS  Google Scholar 

  53. Djaghout I et al (2015) Experimental investigation of nickel electrodeposits brightness in the presence of surfactants: modeling, optimization and polarization studies. Port Electrochim Acta 33(4):209–222

    Article  CAS  Google Scholar 

  54. Shimizu T (1992) Effect of pyridines on cathode polarization in nickel plating. Chem Express 7:809–809

    CAS  Google Scholar 

  55. Shimizu T, Ishizuka T (1994) Cathode behavior in a nickel plating solution containing pyridines and/or sacchain. Nickel mekki ekichu deno pyridine rui to sakkarin no cathode kyodo

  56. Schmitz EP et al (2016) Influence of commercial organic additives on the nickel electroplating. Int J Electrochem Sci 11:983–997

    CAS  Google Scholar 

  57. Szeptycka B (2002) Galwaniczne powłoki kompozytowe Ni-B. Kompozyty 2(4):248–252

    CAS  Google Scholar 

  58. Wood W (1935) Differences in the structure of electrodeposited metallic coatings shown by X-ray diffraction. Trans Faraday Soc 31:1248–1253

    Article  CAS  Google Scholar 

  59. Hume-Rothery W, Wyllie MR (1943) The structure of electro-deposited chromium. Proc R Soc Lond Ser A 181(987):331–344

    Article  CAS  Google Scholar 

  60. Clark G, Simonsen S (1951) The relationship between orientation, grain size, and brightness in nickel electrodeposits. J Electrochem Soc 98(3):110–115

    Article  CAS  Google Scholar 

  61. Weil R, Paquin R (1960) The relationship between brightness and structure in electroplated nickel. J Electrochem Soc 107(2):87–91

    Article  CAS  Google Scholar 

  62. Weil R, Cook H (1962) Electron-microscopic observations of the structure of electroplated nickel. J Electrochem Soc 109(4):295–301

    Article  CAS  Google Scholar 

  63. Rogers G, Taylor K (1963) The effects of coumarin on the electrodeposition of nickel. Electrochim Acta 8(12):887–904

    Article  CAS  Google Scholar 

  64. Rogers G, Taylor K (1966) The reactions of coumarin, cinnamyl alcohol, butynediol and propargyl alcohol at an electrode on which nickel is depositing. Electrochim Acta 11(12):1685–1696

    Article  CAS  Google Scholar 

  65. Partridge L, Tansley A, Porter A (1966) The adsorption of coumarin at a mercury electrode and its effect on metal-deposition potentials. Electrochim Acta 11(5):517–526

    Article  CAS  Google Scholar 

  66. Kruglikov S, Kudryavtsev N, Sobolev R (1967) The effect of some primary and secondary brighteners on the double layer capacitance in nickel electrodeposition. Electrochim Acta 12(9):1263–1271

    Article  CAS  Google Scholar 

  67. Raub E et al (1969) Influence of electrolyte additives on the processes in the phase boundary coat during nickel deposition. Metalloberflache 23(10):293–302

    CAS  Google Scholar 

  68. Dahms W, Schumacher R, McCaskie J (1997) Characterization of bright/semi-bright nickel electrolytes & corrosion properties of the corresponding nickel deposits. Plat Surf Finish 84(5):120–126

    CAS  Google Scholar 

  69. Crossley J, Brook P, Cuthbertson J (1966) Electron-microscope studies of the structure of nickel deposited in the presence of addition agents. Electrochim Acta 11(8):1153–1161

    Article  CAS  Google Scholar 

  70. Weil R, Jacobus W (1966) About two microstructural features of electrodeposits. Plating 53(1):102–106

    CAS  Google Scholar 

  71. Kardos O (1974) Current distribution on microprofiles. Plating 61(2):129

    Google Scholar 

  72. Xia S, Zuo Z (1996) Effects of anti-organic impurity additives on leveling power of nickel plating solution. Electroplat Finish 15:7–10

    CAS  Google Scholar 

  73. Devos O et al (1998) Magnetic field effects on nickel electrodeposition. J Electrochem Soc 145(2):401–405

    Article  CAS  Google Scholar 

  74. Franklin TC (1987) Some mechanisms of action of additives in electrodeposition processes. Surf Coat Technol 30(4):415–428

    Article  CAS  Google Scholar 

  75. Gao C-Z et al (1999) Effects of saccharin and pyridine derivatives on the electrocrystallization of nickel. Trans IMF 77(5):192–195

    Article  CAS  Google Scholar 

  76. Motskute D, Nevinskene O (1997) Effect of 2-butenediol-1, 4 on behavior of 2-butynediol-1, 4 at Ni cathods and during electrodeposition of Ni. Russ J Electrochem 33(3):324–327

    CAS  Google Scholar 

  77. Fuyun G et al (1994) Effect of saccharin on electrochemical activty and structure of electrodeposited Ni. J Xiamen Univ 2:02

    Google Scholar 

  78. Wojciechowski J et al (2017) Nickel coatings electrodeposited from watts type baths containing quaternary ammonium sulphate salts. Int J Electrochem Sci 12:3350–3360

    Article  CAS  Google Scholar 

  79. Mohanty U et al (2001) Effect of pyridine and its derivatives on the electrodeposition of nickel from aqueous sulfate solutions Part I: current efficiency, surface morphology and crystal orientation. J Appl Electrochem 31(5):579–583

    Article  CAS  Google Scholar 

  80. Kruglikov S, Volkov V (1970) Behaviour of n-toluene sulphamide in the deposition of nickel from a sulphate electrolyte. Elektrokhimiya 6(7):1033–1036

    CAS  Google Scholar 

  81. Dubsky J, Kozak P (1970) Kathodische Reaktionen von Glanzzusätzen der ersten Klasse im Nickelbad. Metalloberfläche 24:423–430

    CAS  Google Scholar 

  82. Nayak B, Karunakaran K (1982) Studies on the electrodeposition of nickel from a Wattss’ bath in the presence of sodium naphthalene-2-sulphonate and acrylamide additives. J Appl Electrochem 12(3):323–328

    Article  CAS  Google Scholar 

  83. Rashidi A, Amadeh A (2009) The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings. Surf Coat Technol 204(3):353–358

    Article  CAS  Google Scholar 

  84. Spencer Jr RA (1990) Electroleses metal coatings incorporating particulate matter of varied nominal sizes. US Patent 4,547,407, 15 Oct 1985

  85. Stopić S et al (1999) Influence of additives on the properties of spherical nickel particles prepared by ultrasonic spray pyrolysis. J Mater Res 14(7):3059–3065

    Article  Google Scholar 

  86. Yang Y-F, Huan Y, Liang C-J (2016) Influences of saccharin on electrochemical behavior of nickel electrodeposition. DEStech Trans Mater Sci Eng (amst)

  87. Duca D-A, Dan ML, Vaszilcsin N (2017) Reuse of expired cefort drug in nickel electrodeposition from Watts Bath. Chem J Mold 12(1):87–94

    Article  CAS  Google Scholar 

  88. Milushkin A (1993) Thiosemicarbazide derivatives as brighteners and Ni electrocrystallization inhibitors. Zashch Met 29(2):275–281

    CAS  Google Scholar 

  89. Gorbunova K, Sadakov G (1981) Structure and properties of nickel electrodeposited in the presence of organosilicon surfactants. Prot Met (USSR) 17(5):475–477

    Google Scholar 

  90. Mockute D, Bernotiene G, Vilkaite R (2002) Reaction mechanism of some benzene sulfonamide and saccharin derivatives during nickel electrodeposition in Watts-type electrolyte. Surf Coat Technol 160(2–3):152–157

    Article  CAS  Google Scholar 

  91. Vairamuthu R, Subramanian M (2007) Effect of α-picoline and quinoline on dc and pulse plating of nickel directly on aluminium. Trans IMF 85(3):162–165

    Article  CAS  Google Scholar 

  92. Erb U, Aust KT, Palumbo G (2007) Electrodeposited nanocrystalline metals, alloys, and composites. Nanostructured materials. Elsevier, Amsterdam, pp 235–292

    Chapter  Google Scholar 

  93. Binkauskienė E (1997) On the nature of transformation reactions of unsaturated glycols on the nickel cathode. J Chem Technol Biotechnol 70(1):106–110

    Article  Google Scholar 

  94. Edwards J, Levett MJ (1969) Preparation of coumarin derivatives and their evaluation as additives for nickel plating solutions. Trans IMF 47(1):7–12

    Article  CAS  Google Scholar 

  95. Mohanty U-S et al (2005) Effect of thiourea during nickel electrodeposition from acidic sulfate solutions. Metall Mater Trans B 36(6):737–741

    Article  Google Scholar 

  96. Ke B et al (1959) Role of thiourea in the electrodeposition of copper. J Electrochem Soc 106(5):382–388

    Article  CAS  Google Scholar 

  97. Tripathy B et al (1997) Zinc electrowinning from acidic sulfate solutions. Part I: effects of sodium lauryl sulfate. J Appl Electrochem 27(6):673–678

    Article  CAS  Google Scholar 

  98. Beacom SE, Riley BJ (1959) A radioisotopic study of leveling in bright nickel electroplating baths. J Electrochem Soc 106(4):309–314

    Article  CAS  Google Scholar 

  99. Karagianni B, Tsangaraki-Kaplanoglou I (1996) N-heterocyclic organic compounds as additives in the AC coloring of anodized aluminum from nickel sulfate solutions. Part I: effect on color intensity and uniformity of the probes. Plat Surf Finish 83(9):73–76

    CAS  Google Scholar 

  100. Li Y, Yao J, Huang X (2016) Effect of Saccharin on the process and properties of nickel electrodeposition from sulfate electrolyte. Int J Metall Mater Eng 2:123

    Article  Google Scholar 

  101. Dukovic JO, Tobias C (1986) Studies on current distribution in electrochemical cells

  102. Khalil RM et al (1993) On the electrodeposition of black nickel. Trans IMF 71(3):99–105

    Article  CAS  Google Scholar 

  103. Such TE, Wyszynski A, James BS (1977) Plating. US Patent 4,049,509, 20 Sept 1977

  104. Mohanty U et al (2009) Effect of sodium lauryl sulphate (SLS) on nickel electrowinning from acidic sulphate solutions. Hydrometallurgy 100(1–2):60–64

    Article  CAS  Google Scholar 

  105. Brown H (1968) Addition agents, anions, and inclusions in bright nickel plating. Plating 55(10):1047–1055

    CAS  Google Scholar 

  106. Sellers WW (1984) A retrospective view of nickel plating. Plat Surf Finish 71(6):64–70

    CAS  Google Scholar 

  107. Henricks JA (1942) An interpretation of the mechanism of bright electroplating. Trans Electrochem Soc 82(1):113–133

    Article  Google Scholar 

  108. Henry B (1949) Electrodeposition of nickel from an acid bath. US Patent 2,466,677, 12 Apr 1949

  109. Becking DH, Clauss RJ, Henry B (1959) Electrodeposition of nickel. US Patent 2,882,208, 14 Apr 1959

  110. Otto K (1958) Bright nickel plating. US Patent 2,712,522, 5 July 1955

  111. Brown H (1969) Effects of unsaturated compounds in nickel and cobalt plating. Trans IMF 47(1):63–70

    Article  CAS  Google Scholar 

  112. Popov B (1982) Contribution to the knowledge of the electrodeposition of nickel in the presence of organic compounds. Kem Ind 31:455–461

    CAS  Google Scholar 

  113. Bodnevas A (1994) Effect of additive conversion on internal stresses in nickel deposits. Plat Surf Finish 81(12):75–79

    CAS  Google Scholar 

  114. Martyak NM, Seefeldt R (2004) Comparison of nickel methanesulfonate and nickel sulfamate electrolytes. Plat Surf Finish 91(12):32–37

    CAS  Google Scholar 

  115. Chatterjee B, Science and industry of processes for zinc-based coatings with improved properties

  116. Srinivasan R, Ramesh Bapu G (2013) Effect of additives on electrodeposition of nickel from acetate bath: cyclic voltammetric study. Trans IMF 91(1):52–56

    Article  CAS  Google Scholar 

  117. El-Hadi Z, Khalil R (1994) Effect of some new organic addition agents on the cathodic electrodeposition of nickel poweder. Orient J Chem 10:287–287

    CAS  Google Scholar 

  118. Kruglikov S et al (1964) A study of levelling in nickel and copper plating solutions. Trans IMF 42(1):129–137

    Article  Google Scholar 

  119. Krishnan R et al (1996) Effect of organic acids in nickel plating. Bull Electrochem 12(5–6):270–273

    CAS  Google Scholar 

  120. Kamel M et al (2010) Nickel electrodeposition from novel lactate bath. Trans IMF 88(4):191–197

    Article  CAS  Google Scholar 

  121. Neuróhr K et al (2015) Electrodeposition of Ni from various non-aqueous media: the case of alcoholic solutions. J Electrochem Soc 162(7):D256–D264

    Article  CAS  Google Scholar 

  122. Ispas A, Bund A (2014) Electrodeposition in ionic liquids. Electrochem Soc Interface 23(1):47–51

    Article  CAS  Google Scholar 

  123. Zhu Y-L, Katayama Y, Miura T (2010) Effects of acetonitrile on electrodeposition of Ni from a hydrophobic ionic liquid. Electrochim Acta 55(28):9019–9023

    Article  CAS  Google Scholar 

  124. Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8(37):4265–4279

    Article  CAS  PubMed  Google Scholar 

  125. Gu C-D, Tu J-P (2011) Thermochromic behavior of chloro-nickel (II) in deep eutectic solvents and their application in thermochromic composite films. RSC Adv 1(7):1220–1227

    Article  CAS  Google Scholar 

  126. Kendrick R (1963) The effects of some aromatic sulphonic acids on the stress, structure, and composition of electrodeposited nickel. Trans IMF 40(1):19–27

    Article  Google Scholar 

  127. Milushkin A (1997) Quaternary sulfoammonium chlorides (QSAC) as the hydrogen saturation inhibitors in electrodeposition of Fe–Ni alloy. Zhurnal Prikladnoi Khimii (UK) 70(2):256–260

    CAS  Google Scholar 

  128. Rudnik E, Wojnicki M, Włoch G (2012) Effect of gluconate addition on the electrodeposition of nickel from acidic baths. Surf Coat Technol 207:375–388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Fallon for assistance in SEM, K. Seymour for XRD, and also thank late Dr. R. P. Das and Dr. S.C. Das for encouragement. Udit would like to thank Dr. Michael Stein for educational support. Udit would also like to extend my thanks to Dr. Daryoush Habibi and Dr. Mehdi Khiadani for lab support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Mohanty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, U.S., Tripathy, B.C., Singh, P. et al. Roles of organic and inorganic additives on the surface quality, morphology, and polarization behavior during nickel electrodeposition from various baths: a review. J Appl Electrochem 49, 847–870 (2019). https://doi.org/10.1007/s10800-019-01335-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01335-w

Keywords

Navigation