Skip to main content
Log in

Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry

  • Methods
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy was tested to monitor the cell attachment and the biofilm proliferation in order to identify characteristic events induced on the metal surface by Gram-negative (Pseudomonas aeruginosa PAO1) and Gram-positive (Bacillus subtilis) bacteria strains. Electrochemical impedance spectra of AISI 304 electrodes during cell attachment and initial biofilm growth for both strains were obtained. It can be observed that the resistance increases gradually with the culture time and decreases with the biofilm detachment. So, the applicability of electric cell-substrate impedance sensing (ECIS) for studying the attachment and spreading of cells on a metal surface has been demonstrated. The biofilm formation was also characterized by the use of scanning electron microscopy and confocal laser scanning microscopy and COMSTAT image analysis. The electrochemical results roughly agree with the microscope image observations. The ECIS technique used in this study was used for continuous real-time monitoring of the initial bacterial adhesion and the biofilm growth. It provides a simple and non-expensive electrochemical method for in vitro assessment of the presence of biofilms on metal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Mazeedi HAA, Cottis RA (2004) A practical evaluation of electrochemical noise parameters as indicators of corrosion type. Electrochim Acta 49:2787–2793

    Article  CAS  Google Scholar 

  • Andreescu S, Sadik OA, McGee DW (2004) Autonomous multielectrode system for monitoring the interactions of isoflavonoids with lung cancer cells. Anal Chem 76:2321–2330

    Article  CAS  Google Scholar 

  • Beech IB (2004) Corrosion of technical materials in the presence of biofilms—current understanding and state-of-the art methods of study. Int Biodeterior Biodegrad 53:177–183

    Article  CAS  Google Scholar 

  • Borenstein S (1994) Microbiologically influenced corrosion handbook. Industrial Press, New York

    Book  Google Scholar 

  • Boss R, van der Mei HC, Henny C, Buscher H (1999) Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 23:179–229

    Article  Google Scholar 

  • Dimitrov D, Hadjiev D, Nikov I (2007) Optimization of support mediums for particle based biorectors. Biochem Eng J 37:238–245

    Article  CAS  Google Scholar 

  • Feng J, Ci YX, Lou JL, Zhang XQ (1999) The voltammetric behaviour mammalian tumor cells and bioanalytical applications in cell metabolism. Bioelectrochem Bioenerg 48:217–222

    Article  CAS  Google Scholar 

  • Feng J, Luo GA, Jiang HY, Wang RG, An CC (2000) Voltammetric behaviour of tumor cells U937 and its usefulness in evaluating the effect of caffeic acid. Electroanalysis 12:513–516

    Article  CAS  Google Scholar 

  • Flemming HC (1996) Biofouling and microbiologically influenced corrosion (MIC)—an economical and technical overview. Microbiological deterioration of materials. Springer, Heidelberg, pp 5–14

    Google Scholar 

  • Hamilton WA (1985) Sulphate reducing bacteria and anaerobic corrosion. Ann Rev Microbiol 39:195–217

    Article  CAS  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel program COMSTAT. Microbiology 146:2395–2407

    Article  CAS  Google Scholar 

  • Kearns JR, Scully JR, Roberge PR, Reichert DL, Dawson JL (1966) (eds) Electrochemical noise measurements for corrosion applications. American Society for Testing and Materials STP 1277

  • Klahre J, Lustenberger M, Flemming HC (1996) Microbiological problems in the paper industry. I: Damages, reasons, costs, foundations. Das Papier 50:47–53

    CAS  Google Scholar 

  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation be Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  Google Scholar 

  • Li B, Logan BE (2004) Bacterial adhesion to glass and metal oxide surfaces. Colloids Surf B 36:81–90

    Article  CAS  Google Scholar 

  • Li HN, Ci YX (2000) Electrochemical method for analyzing intracellular redox activity changes of the etoposide-induced apoptosis in HL-60 cells. Anal Chim Acta 416:221–226

    Article  CAS  Google Scholar 

  • Li HN, Ci YX, Feng J, Cheng K, Fu S, Wang DB (1999) The voltammetric behaviour of bone marrow of leukemia and its clinical application. Bioelectrochem Bioenerg 48:171–175

    Article  Google Scholar 

  • Li J, Liu X, Guo M, Liu Y, Yao S (2005) Electrochemical study of breast cancer cells MCF-7 and its application in evaluating the effect of diosgenin. Anal Sci 21:561–564

    Article  CAS  Google Scholar 

  • Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH (2004) The Influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol 110:251–256

    Article  CAS  Google Scholar 

  • Luong JHT, Habibi-Rezaei M, Meghrous J, Xiao C, Male KB, Kamen A (2001) Monitoring mobility, spreading and mortality of adherent insect cells using impedance sensor. Anal Chem 73:1844–1848

    Article  CAS  Google Scholar 

  • Lutey RW (1993) A practical manual on microbiologically influenced corrosion, NACE International, Houston. In: Gobrin G (Eds.), pp 25–30

  • Oliveira R (1997) Understanding adhesion: a means for preventing fouling. Exp Therm Fluid Sci 14:316–322

    Article  CAS  Google Scholar 

  • Oss CJV (1994) Interfacial forces in aqueous media. Marcel Decker, New York, p 440

    Google Scholar 

  • Ruan C, Yang L, Li Y (2002) Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal Chem 74:4814–4820

    Article  CAS  Google Scholar 

  • Torisawa Y, Kaya T, Takii Y, Oyamatsu D, Nishizawa M, Matsue T (2003) Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Anal Chem 75:2154–2158

    Article  CAS  Google Scholar 

  • Xiao C, Luong JHT (2003) On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol Prog 19:1000–1005

    Article  CAS  Google Scholar 

  • Xiao C, Lachance B, Sunahara G, Luong JHT (2002a) An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal Chem 74:1333–1339

    Article  CAS  Google Scholar 

  • Xiao C, Lachance B, Sunahara G, Luong JHT (2002b) Assessment of cytotoxicity using electric cell-substrate impedance sensing: concentration and time response function approach. Anal Chem 74:5748–5753

    Article  CAS  Google Scholar 

  • Yang MZ, Wilmott M, Luo JL (1998) Analysis of the electrochemical noise for localized corrosion of type A516-70 carbon steel. Corrosion 54:869–876

    Article  CAS  Google Scholar 

  • Yang L, Li Y, Erf GF (2004) Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal Chem 76:1107–1113

    Article  CAS  Google Scholar 

  • Yu JG, Luo JL, Norton PR (2002) Investigation of hydrogen induced pitting active sites. Electrochim Acta 47:4019–4025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Linossier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dheilly, A., Linossier, I., Darchen, A. et al. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl Microbiol Biotechnol 79, 157–164 (2008). https://doi.org/10.1007/s00253-008-1404-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1404-7

Keywords

Navigation