Skip to main content

Advertisement

Log in

Polyaniline/α-Ni(OH)2/iron oxide-doped reduced graphene oxide-based hybrid electrode material

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the electrochemical performance of a polyaniline-based porous ternary composite (PNHFeG) electrode material is reported for a high-performance supercapacitor. The PNHFeG ternary composite was prepared through in situ oxidative polymerization of aniline in the presence of a binary composite NHFeG that involves the combination of flower-like nanostructured Ni(OH)2 and iron oxide-doped reduced graphene oxide (Fe-RGO). The porous ternary PNHFeG composite with high surface area (239 m2 g−1) notably exhibits maximum specific capacitance (C sp ) of 2714 F g−1 at 5 A g−1 current density, along with 98.5% retention of its initial capacitance even after 2000 cycles. Moreover, even at a higher current density of 30 A g−1, the composite electrode material maintains a remarkable C sp value of 1223 F g−1. Finally, the PNHFeG electrode material reveals a power density of 1498 W kg−1, along with a maximum energy density of 135.7 Wh kg−1 at 5 A g−1, suggesting that the current composite electrode material can be considered as a promising candidate for high-performance supercapacitor applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dan Y, Lin H, Chen L, Zhang L, Su J, Yue H, Cai X (2015) A composite electrodeposited PbO2/SnO2 positive electrode material for hybrid supercapacitors. RSC Adv 5:98983–98989

    Article  CAS  Google Scholar 

  2. Conway B (1999) Electrochemical supercapacitor: scientific fundamentals and technological applications, Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  3. Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896

    Article  CAS  Google Scholar 

  4. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  5. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  6. Wang K, Wu H, Meng Y, Wei Z (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31

    Article  CAS  Google Scholar 

  7. Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43:3303–3323

    Article  CAS  Google Scholar 

  8. Das AK, Karan SK, Khatua BB (2015) High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim Acta 180:1–15

    Article  CAS  Google Scholar 

  9. Shen M, Ma L, Zhu J, Li X, Wang C (2015) An assembled-nanosheets discus-like Ni(OH)2 hierarchical structure as a high performance electrode material for supercapacitors. RSC Adv 5:59659–59664

    Article  CAS  Google Scholar 

  10. Ghosh D, Mandal M, Das CK (2015) Solid state flexible asymmetric supercapacitor based on carbon fiber supported hierarchical Co(OH)xCO3 and Ni(OH)2. Langmuir 31:7835–7843

    Article  CAS  Google Scholar 

  11. Min S, Zhao C, Zhang Z, Wang K, Chen G, Qian X, Guo Z (2015) Hydrothermal growth of MnO2/RGO/Ni(OH)2 on nickel foam with superior supercapacitor performance. RSC Adv 5:62571–62576

    Article  CAS  Google Scholar 

  12. Liu X, Zheng Y, Wang X (2015) Controllable preparation of polyaniline–graphene nanocomposites using functionalized graphene for supercapacitor electrodes. Chem Eur J 21:10408–10415

    Article  CAS  Google Scholar 

  13. Oraon R, De Adhikari A, Tiwari S, Nayak G (2015) Nanoclay based graphene polyaniline hybrid nanocomposites: promising electrode materials for supercapacitors. RSC Adv 5:68334–68344

    Article  CAS  Google Scholar 

  14. Zhou X, Wang A, Pan Y, Yu C, Zou Y, Zhou Y, Chen Q, Wu S (2015) Facile synthesis of a Co3O4@carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors. J Mater Chem A 3:13011–13015

    Article  CAS  Google Scholar 

  15. Wang Y, Yang Y, Zhang X, Liu C, Hao X (2015) One-step electrodeposition of polyaniline/nickel hexacyanoferrate/sulfonated carbon nanotubes interconnected composite films for supercapacitor. J Solid State Electrochem 19:3157–3168

    Article  CAS  Google Scholar 

  16. Li H, He Y, Pavlinek V, Cheng Q, Saha P, Li C (2015) MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes. J Mater Chem A 3:17165–17171

    Article  CAS  Google Scholar 

  17. Çağlar M, Arslan A, Kılıç R, Hür E (2015) Electrochemically synthesized Sn2+ doped poly (3-methylthiophene) and poly (3, 4-ethylenedioxythiophene) for supercapacitors. Synth Met 206:8–14

    Article  Google Scholar 

  18. Zhao X, Chen C, Huang Z, Jin L, Zhang J, Li Y, Zhang L, Zhang Q (2015) Rational design of polyaniline/MnO2/carbon cloth ternary hybrids as electrodes for supercapacitors. RSC Adv 5:66311–66317

    Article  CAS  Google Scholar 

  19. Usman M, Pan L, Asif M, Mahmood Z (2015) Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors. J Mater Res 30:3192–3200

    Article  CAS  Google Scholar 

  20. Dhibar S, Das CK (2015) Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes. J Alloys Compd 653:486–497

    Article  CAS  Google Scholar 

  21. Chee WK, Lim HN, Huang NM (2015) Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int J Energy Res 39:111–119

    Article  CAS  Google Scholar 

  22. Jiang W, Yu D, Zhang Q, Goh K, Wei L, Yong Y, Jiang R, Wei J, Chen Y (2015) Ternary hybrids of amorphous nickel hydroxide–carbon nanotube–conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life. Adv Funct Mater 25:1063–1073

    Article  CAS  Google Scholar 

  23. Trchová M, Šedenková I, Konyushenko EN, Stejskal J, Holler P, Ciric-Marjanovic G (2006) Evolution of polyaniline nanotubes: the oxidation of aniline in water. J Phys Chem B 110:9461–9468

    Article  Google Scholar 

  24. Prathap MA, Srivastava R (2011) Morphological controlled synthesis of micro-/nano-polyaniline. J Polym Res 18:2455–2467

    Article  CAS  Google Scholar 

  25. Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823

    Article  CAS  Google Scholar 

  26. Soler-Illia GJDA, Jobbágy M, Regazzoni AE, Blesa MA (1999) Synthesis of nickel hydroxide by homogeneous alkalinization: precipitation mechanism. Chem Mater 11:3140–3146

    Article  Google Scholar 

  27. Jeevanandam P, Koltypin Y, Gedanken A, Mastai Y (2000) Synthesis of α-cobalt (II) hydroxide using ultrasound radiation. J Mater Chem 10:511–514

    Article  CAS  Google Scholar 

  28. Xu ZP, Zeng HC (1999) Interconversion of brucite-like and hydrotalcite-like phases in cobalt hydroxide compounds. Chem Mater 11:67–74

    Article  CAS  Google Scholar 

  29. Zhu Y, Li H, Koltypin Y, Gedanken A (2002) Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication. J Mater Chem 12:729–733

    Article  CAS  Google Scholar 

  30. Rajamathi M, Kamath PV (1998) On the relationship between α-nickel hydroxide and the basic salts of nickel. J Power Sources 70:118–121

    Article  CAS  Google Scholar 

  31. Jeevanandam P, Koltypin Y, Gedanken A (2001) Synthesis of nanosized α-nickel hydroxide by a sonochemical method. Nano Lett 1:263–266

    Article  CAS  Google Scholar 

  32. Qu B, Ma C, Ji G, Xu C, Xu J, Meng YS, Wang T, Lee JY (2014) Layered SnS2-reduced graphene oxide composite–A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater 26:3854–3859

    Article  CAS  Google Scholar 

  33. Li H, Yu M, Wang F, Liu P, Liang Y, Xiao J, Wang C, Tong Y, Yang G (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

    Article  CAS  Google Scholar 

  34. Ida S, Shiga D, Koinuma M, Matsumoto Y (2008) Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. J Am Chem Soc 130:14038–14039

    Article  CAS  Google Scholar 

  35. Li W, Zhang S, Chen J (2005) Synthesis, characterization, and electrochemical application of Ca(OH)2–, Co(OH)2–, and Y(OH)3– coated Ni(OH)2 tubes. J Phys Chem B 109:14025–14032

    Article  CAS  Google Scholar 

  36. Wang J, Pang H, Yin J, Guan L, Lu Q, Gao F (2010) Controlled fabrication and property studies of nickel hydroxide and nickel oxide nanostructures. CrystEngComm 12:1404–1409

    Article  CAS  Google Scholar 

  37. Lin TW, Dai CS, Hung KC (2014) High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci Rep 4:7274

    Article  CAS  Google Scholar 

  38. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5:8904–8913

    Article  CAS  Google Scholar 

  39. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  40. Patil U, Gurav K, Fulari V, Lokhande C, Joo OS (2009) Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J Power Sources 188:338–342

    Article  CAS  Google Scholar 

  41. Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem Commun 4213–4215

  42. Xu J, Wang K, Zu SZ, Han BH, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS nano 4:5019–5026

    Article  CAS  Google Scholar 

  43. Min S, Zhao C, Zhang Z, Chen G, Qian X, Guo Z (2015) Synthesis of Ni(OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. J Mater Chem A 3:3641–3650

    Article  CAS  Google Scholar 

  44. Chen XA, Chen X, Zhang F, Yang Z, Huang S (2013) One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor. J Power Sources 243:555–561

    Article  CAS  Google Scholar 

  45. Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very much thankful to Indian Institute of Technology Kharagpur for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Bhusan Khatua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3868 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Maitra, A., Karan, S.K. et al. Polyaniline/α-Ni(OH)2/iron oxide-doped reduced graphene oxide-based hybrid electrode material. J Appl Electrochem 47, 531–546 (2017). https://doi.org/10.1007/s10800-017-1052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1052-7

Keywords

Navigation