Skip to main content
Log in

The effect of sodium and niobium co-doping on electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Na+- and Nb5+-co-doped Li3.98Na0.02Ti4.98Nb0.02O12 (NaNbLTO), the anode material for lithium-ion batteries, is synthesized by simple solid-state reaction route at 850 °C for 12 h. Na+ is introduced into the main structure to expand the lattice, while Nb5+ increases the electronic conductivity through the reduction of some of Ti4+ ions to Ti3. The anode material is explored by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and electric conductivity measurements. XRD patterns and FESEM images demonstrates that Na+ and Nb5+ co-doping do not alter the cubic spinel structure, the morphology, and the particle size of the Li4Ti5O12. Electric conductivity measurements reveal that the Na+- and Nb5+-co-doped NaNbLTO exhibits a higher electronic conductivity than the un-doped Li4Ti5O12 (LTO), Na+-doped Li3.98Na0.02Ti5O12 (NaLTO) and Nb5+-doped Li4Ti4.98Nb0.02O12 (NbLTO). It is found that the discharge capacity of NaNbLTO is higher than those of the un-doped LTO, Na+-doped NaLTO, and Nb5+-doped NbLTO at 0.1 C, 0.5 C, and 1.0 C current rates, which demonstrates the considerable synergic effect of Nb5+ and Na+ co-doping on improving the electrochemical performances of LTO. As evidence, NaNbLTO is a promising anode material for lithium-ion batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Armand M, Axmann P, Bresser D, Copley M, Porcher W, Trabesinger S, Wohlfahrt-Mehrens M, Zhang H (2020) Lithium-ion batteries – current state of the art and anticipated developments. J Power Sources 479:228708

    Article  CAS  Google Scholar 

  2. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3:279–289

    Article  Google Scholar 

  3. Kim J-M, Zhang X, Zhang J-G, Manthiram A, Meng YS, Xu W (2021) Batteries and fuel cells for emerging electric vehicle markets. Mater Today 46:155–182

    Article  CAS  Google Scholar 

  4. Gonzalez-Reyna MA, Rodriguez A, Perez-Robles JF (2021) One-step synthesis of carbon nanospheres with an encapsulated iron-nickel nanoalloy and its potential use as an electrocatalyst. Nanotechnology 32:095706

    Article  CAS  Google Scholar 

  5. Zhang L, Zhang J, Xu B (2022) Enhancing the electrochemical performance of Li4Ti5O12 anode materials by codoping with Na and Br. J Alloy Compd 903:163962

    Article  CAS  Google Scholar 

  6. Deng X, Li W, Zhu M, Xiong D, He M (2021) Synthesis of Cu-doped Li4Ti5O12 anode materials with a porous structure for advanced electrochemical energy storage: lithium-ion batteries. Solid State Ionics 364:115614

    Article  CAS  Google Scholar 

  7. Yan B, Li MS, Li XF, Bai ZM, Yang JW, Xiong DB, Li DJ (2015) Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode. J Mater Chem A 3(22):11773–11781

    Article  CAS  Google Scholar 

  8. Bai X, Li W, Wei A, Chang Q, Zhang LH, Liu ZF (2018) Preparation and electrochemical performance of F-doped Li4Ti5O12 for use in the lithium-ion batteries. Solid State Ion 324:13–19

    Article  CAS  Google Scholar 

  9. Yi T-F, Wei T-T, Li Y, He Y-B, Wang Z-B (2020) Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Mater 26:165–197

    Article  Google Scholar 

  10. Chen S, Xin Y, Zhou Y, Ma Y, Zhou H, Qi L (2014) Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ Sci 7(6):1924–1930

    Article  CAS  Google Scholar 

  11. Hong H-J, Ban G, Lee S-M, Park I-S, Lee Y-J (2020) Synthesis of 3D-structured Li4Ti5O12 from titanium(IV) oxysulfate (TiOSO4) solution as a highly sustainable anode material for lithium-ion batteries. J Alloys Compd 844:156203

  12. Gao L, Wang L, Dai S, Cao M, Zhong Z, Shen Y, Wang M (2017) Li4Ti5O12-TiO2 nanowire arrays constructed with stacked nanocrystals for high-rate lithium and sodium ion batteries. J Power Sources 344:223–232

    Article  CAS  Google Scholar 

  13. Chiu H-C, Lu X, Zhou J, Gu L, Reid J, Gauvin R, Zaghib K, Demopoulos GP (2017) Capacity fade mechanism of Li4Ti5O12 nanosheet anode. Adv Energy Mater 7(5):1601825

  14. Gangaja B, Nair S, Santhanagopalan D (2019) Surface-engineered Li4Ti5O12 nanoparticles by TiO2 coating for superior rate capability and electrochemical stability at elevated temperature. Appl Surf Sci 480:817–821

    Article  CAS  Google Scholar 

  15. Xu H, Chen J, Wang D, Xiao L, Guo X, Zhang Y, Wang Z (2017) Carbon-coated Li4Ti5O12–TiO2 microspheres as anode materials for lithium ion batteries. Surf Eng 33(7):559–566

    Article  CAS  Google Scholar 

  16. Zhang Q, Liu Y, Lu H, Tang D, Ouyang C, Zhang L (2016) Ce3+ doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithiumion batteries. Electrochim Acta 189:147–157

    Article  CAS  Google Scholar 

  17. Xu GB, Li W, Yang LW, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Highly crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. J Power Sources 276:247–254

    Article  CAS  Google Scholar 

  18. Zhu T, Yu C, Li Y, Cai R, Cui J, Zheng H, Chen D, Zhang Y, Wua Y, Wang Y (2021) Li2O-2B2O3 coating decorated Li4Ti5O12 anode for enhanced rate capability and cycling stability in lithium-ion batteries. J Colloid Interf Sci 585(574–582):575

    Google Scholar 

  19. Hou L, Qin X, Gao X, Guo T, Li X, Li J (2019) Zr-doped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries. J Alloys Compd 774:38–45

    Article  CAS  Google Scholar 

  20. Liang Q, Cao N, Song Z, Gao X, Hou L, Guo T, Qin X (2017) Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries. Electrochim Acta 251:407–414

    Article  CAS  Google Scholar 

  21. Li Y, Wang Z, Zhao D, Zhang L (2015) Gd doped single-crystalline Li4Ti5O12/TiO2 nanosheets composites as superior anode material in lithium ion batteries. Electrochim Acta 182:368–375

    Article  CAS  Google Scholar 

  22. Han J-P, Zhang B, Wang L-Y, Qi Y-X, Zhu H-L, Lu G-X, Yin L-W, Li H, Lun N, Bai Y-J (2018) Combined modification of dual-phase Li4Ti5O12–TiO2 by lithium zirconates to optimize rate capabilities and cyclability. ACS Appl Mater Interfaces 10(29):24910–24919

    Article  CAS  Google Scholar 

  23. Zhang Y, Li J, Zhang F, Li X, Yuan B, Xia M, Zhao P, Lei R (2021) The evolution in electrochemical performance of Li4-XCaxTi5O12 (Ca doped Li4Ti5O12) as anode materials for lithium ion batteries. Colloids Surf A 616:126329

    Article  CAS  Google Scholar 

  24. Bhatti HS, Jabeen S, Mumtaz A, Ali G, Qaisar S, Hussain S (2021) Effects of cobalt doping on structural, optical, electrical and electrochemical properties of Li4Ti5O12 anode. Journal of Alloys and Compounds 890:161691

    Article  Google Scholar 

  25. Meng Q, Chen F, Hao Q, Lia N, Sun X (2021) Nb-doped Li4Ti5O12-TiO2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature. J Alloy Compd 885:160842

    Article  CAS  Google Scholar 

  26. VikramBabu B, SushmaReddi M, Surendra K, Rama Krishna A, Samatha K, Veeraiah V (2021) Synthesis, characterization and electrical studies of Nb-Substituted Li4Ti5O12 anode materials for Li-ion batteries. Mater Today Proc 43:1485–1490

    Article  CAS  Google Scholar 

  27. Zhang L, Zhang J, Xu B (2022) Enhancing the electrochemical performance of Li4Ti5O12 anode materials by co-doping with Na and Br. J Alloy Compd 903:163962

    Article  CAS  Google Scholar 

  28. Li Y, Gao H, Yang W (2022) Enhancements of the structures and electrochemical performances of Li4Ti5O12 electrodes by doping with non-metallic elements. Electrochim Acta 409:139993

    Article  CAS  Google Scholar 

  29. Huang S, Wen Z, Gu Z, Zhu X (2005) Preparation and cycling performance of Al3+and F co substituted compounds Li4AlxTi5−xFyO12−y. Electrochim Acta 50:4057

    Article  CAS  Google Scholar 

  30. Du GD, Sharma N, Peterson VK, Kimpton JA, Jia DZ, Guo ZP (2011) Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: synchrotron X-ray and in situ neutron diffraction studies. Adv Func Mater 21:3990

    Article  CAS  Google Scholar 

  31. Kahrizi M, Ghaffarinejad A, Daneshtalab R (2021) Preparation and effects of F-doping on electrochemical properties of Li4Ti5O12 as anode material for Li-ion battery. Ionics 27:1929–1937

    Article  CAS  Google Scholar 

  32. Lin C, Fan X, Xin Y, Cheng F, Lai MO, Zhou H, Lu L (2014) Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances. Nanoscale 6:6651–6660

    Article  CAS  Google Scholar 

  33. Liu Z, Sun L, Yang W, Yang J, Han S, Chen D, Liu Y, Liu X (2015) The synergic effects of Na and K co-doping on the crystal structure and electrochemical properties of Li4Ti5O12 as anode material for lithium ion battery. Solid State Sci 44:39–44

    Article  CAS  Google Scholar 

  34. Xue X, Yan H, Fu Y (2019) Preparation of pure and metal-doped Li4Ti5O12 composites and their lithium-storage performances for lithium-ion batteries. Solid State Ionics 335:1–6

    Article  CAS  Google Scholar 

  35. Shi L, Xianluo Hu, Huang Y (2014) Fast microwave-assisted synthesis of Nb-doped Li4Ti5O12 for high-rate lithium-ion batteries. J Nanopart Res 16:2332

    Article  Google Scholar 

  36. Yi T-F, Yang S-Y, Li X-Y, Yao J-H, Zhu Y-R, Zhu R-S (2014) Sub-micrometric Li4-xNaxTi5O12 (0≥x< 0.2) spinel as anode material exhibiting high rate capability. J Power Sour 246:505–511

    Article  CAS  Google Scholar 

  37. Wang B, Yuan F, Wang J, Wang Q, Li Z, Zhao W, Li Y, Feng J, Li W (2020) Synthesis of pomegranate-structured Si/C microspheres using P123 as surfactant for high-energy lithium-ion batteries. J Electroanal Chem 864:114102

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with the support of the Research Foundation of Erciyes University (Project Number FBD-10–3314). One of us, S. Rahman, also would like to thank to the Government of Turkey for the financial support during his studies at Erciyes University, Kayseri, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patat, S., Rahman, S. & Dokan, F.K. The effect of sodium and niobium co-doping on electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries. Ionics 28, 3177–3185 (2022). https://doi.org/10.1007/s11581-022-04579-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04579-3

Keywords

Navigation