Skip to main content
Log in

Gold nanoparticles deposited on amine functionalized silica sphere and its modified electrode for hydrogen peroxide sensing

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A facile and environmentally benign synthetic route to decorate preformed amine functionalized silica spheres (SiO2) by in situ formation of gold nanoparticles (Au NPs) at three different concentrations (1, 2, and 3 mM) of Au precursor (HAuCl4) is reported. UV–Visible absorption spectra of SiO2@Au (1, 2, and 3 mM) NPs showed a characteristic surface plasmon resonance band due to the presence of Au NPs and transmission electron microscopic images confirmed that the Au NPs were accommodated on the surface of the amine functionalized SiO2 spheres without aggregation. Herein, N-[3-(trimethoxysilyl) propyl] diethylenetriamine acted as both reducing and stabilizing agent for the Au NPs and no other protecting agents were used. Cyclic voltammogram recorded for the SiO2@Au NPs modified glassy carbon (GC) electrode showed a characteristic electrochemical response due to the presence of Au NPs on the electrode. Electrocatalytic reduction of hydrogen peroxide (H2O2) was carried out at the SiO2@Au (1, 2, and 3 mM) NPs modified GC electrodes, among which the SiO2@Au (3 mM) NPs modified GC electrode produced the highest catalytic current. Electrochemical sensing of H2O2 was performed using linear sweep voltammetry at the SiO2@Au (3 mM) NPs modified GC electrode with an experimental detection limit of 5 μM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tokonami S, Morita N, Takasaki K, Toshima N (2010) Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nanoparticles. J Phys Chem C 114:10336–10341. doi:10.1021/jp9119149

    Article  CAS  Google Scholar 

  2. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  3. Dai X, Wildgoose GG, Salter C, Crossley A, Compton RG (2006) Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. Anal Chem 78:6102–6108. doi:10.1021/ac060582o

    Article  CAS  Google Scholar 

  4. Cheng W, Dong S, Wang E (2002) Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Anal Chem 74:3599–3604. doi:10.1021/ac025661o

    Article  CAS  Google Scholar 

  5. Szamocki R, Reculusa S, Ravaine S, Bartlett PN, Kuhn A, Hempelmann R (2006) Tailored mesostructuring and biofunctionalization of gold for increased electroactivity. Angew Chem Int Ed 45:1317–1321. doi:10.1002/anie.200503292

    Article  CAS  Google Scholar 

  6. Maduraiveeran G, Ramaraj R (2009) Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds. Anal Chem 81:7552–7560. doi:10.1021/ac900781d

    Article  CAS  Google Scholar 

  7. Bharathi S, Fishelson N, Lev O (1999) Direct synthesis and characterization of gold and other noble metal nanodispersions in sol−gel-derived organically modified silicates. Langmuir 15:1929–1937. doi:10.1021/la980490x

    Article  CAS  Google Scholar 

  8. Manivannan S, Ramaraj R (2011) Polymer-embedded gold and gold/silver nanoparticle modified electrodes and their applications in catalysis and sensors. Pure Appl Chem 83:2041–2053. doi:10.1351/PAC-CON-11-03-04

    Article  CAS  Google Scholar 

  9. Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Sol−gel materials in electrochemistry. Chem Mater 9:2354–2375. doi:10.1021/cm970367b

    Article  CAS  Google Scholar 

  10. Pandikumar A, Murugesan S, Ramaraj R (2010) Functionalized silicate sol−gel-supported TiO2−Au core−shell nanomaterials and their photoelectrocatalytic activity. ACS Appl Mater Interfaces 2:1912–1917. doi:10.1021/am100242p

    Article  CAS  Google Scholar 

  11. Rodolfo Z, Alberto S, Patricia S, Vladimir AB, Jose MS (2006) New preparation method of gold nanoparticles on SiO2. J Phys Chem B 110:8559–8565. doi:10.1021/jp060601y

    Article  Google Scholar 

  12. Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18:3352–3357. doi:10.1021/la0155552

    Article  CAS  Google Scholar 

  13. Pol VG, Gedanken A, Calderon-Moreno J (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15:1111–1118. doi:10.1021/cm021013+

    Article  CAS  Google Scholar 

  14. Guo S, Zhai J, Fang Y, Dong S, Wang E (2008) Nanoelectrocatalyst based on high-density Au/Pt hybrid nanoparticles supported on a silica nanosphere. Chem Asian J 3:1156–1162. doi:10.1002/asia.200700422

    Article  CAS  Google Scholar 

  15. Yen C-W, Lin M-L, Wang A, Chen S-A, Chen J-M, Mou C-Y (2009) CO oxidation catalyzed by Au−Ag bimetallic nanoparticles supported in mesoporous silica. J Phys Chem C 113:17831–17839. doi:10.1021/jp9037683

    Article  CAS  Google Scholar 

  16. Jean R-D, Chiu K-C, Chen T-H, Chen C-H, Liu D-M (2010) Functionalized silica nanoparticles by nanometallic Ag decoration for optical sensing of organic molecule. J Phys Chem C 114:15633–15639. doi:10.1021/jp106185m

    Article  CAS  Google Scholar 

  17. Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735. doi:10.1021/jp046032g

    Article  CAS  Google Scholar 

  18. Kim YH, Lee DK, Cha HG, Kim CW, Kang YS (2007) Synthesis and characterization of antibacterial Ag−SiO2 nanocomposite. J Phys Chem C 111:3629–3635. doi:10.1021/jp068302w

    Article  CAS  Google Scholar 

  19. Kim YH, Kim CW, Cha HG, Lee DK, Jo BK, Ahn GW, Hong ES, Kim JC, Kang YS (2009) Bulklike thermal behavior of antibacterial Ag−SiO2 nanocomposites. J Phys Chem C 113:5105–5110. doi:10.1021/jp809892c

    Article  CAS  Google Scholar 

  20. Tsiafoulis CG, Trikalitis PN, Prodromidis MI (2005) Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem Commun 7:1398–1404. doi:10.1016/j.elecom.2005.10.001

    Article  CAS  Google Scholar 

  21. Chen W, Cai S, Ren Q-Q, Wen W, Zhao Y-D (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58. doi:10.1039/C1AN15738H

    Article  CAS  Google Scholar 

  22. Wen Z, Ci S, Li J (2009) Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C 113:13482–13487. doi:10.1021/jp902830z

    Article  CAS  Google Scholar 

  23. Ahmad M, Pan C, Gan L, Nawaz Z, Zhu J (2010) Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. J Phys Chem C 114:243–250. doi:10.1021/jp9089497

    Article  CAS  Google Scholar 

  24. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892. doi:10.1016/j.bios.2005.10.027

    Article  CAS  Google Scholar 

  25. Jia WZ, Guo M, Zheng Z, Yu T, Rodriguez EG, Wang Y, Lei Y (2009) Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: toward H2O2 detection. J Electroanal Chem 625:27–32. doi:10.1016/j.jelechem.2008.09.020

    Article  CAS  Google Scholar 

  26. Pena RC, Gamboa JCM, Bertotti M, Paixao TRLC (2011) Studies on the electrocatalytic reduction of hydrogen peroxide on a glassy carbon electrode modified with a ruthenium oxide hexacyanoferrate film. Int J Electrochem Sci 6:394–403

    CAS  Google Scholar 

  27. Luo Y, Liu H, Rui Q, Tian Y (2009) Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c. Anal Chem 81:3035–3041. doi:10.1021/ac802721x

    Article  CAS  Google Scholar 

  28. Yin J, Qi X, Yang L, Hao G, Li J, Zhong J (2011) A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochim Acta 56:3884–3889. doi:10.1016/j.electacta.2011.02.033

    Article  CAS  Google Scholar 

  29. Lee YJ, Park JY, Kim Y, Ko JW (2011) Amperometric sensing of hydrogen peroxide via highly roughened macroporous gold-/platinum nanoparticles electrode. Curr Appl Phys 11:211–216. doi:10.1016/j.cap.2010.07.009

    Article  CAS  Google Scholar 

  30. Li Y, Lu Q, Wu S, Wang L, Shi X (2013) Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure. Biosens Bioelectron 41:576–581. doi:10.1016/j.bios.2012.09.027

    Article  CAS  Google Scholar 

  31. Li X, Heryadi D, Gewirth AA (2005) Electroreduction activity of hydrogen peroxide on Pt and Au electrodes. Langmuir 21:9251–9259. doi:10.1021/la0508745

    Article  CAS  Google Scholar 

  32. Maduraiveeran G, Ramaraj R (2007) Gold nanoparticles embedded in silica sol–gel matrix as an amperometric sensor for hydrogen peroxide. J Electroanal Chem 608:52–58. doi:10.1016/j.jelechem.2007.05.009

    Article  CAS  Google Scholar 

  33. Manivannan S, Ramaraj R (2009) Core–shell Au/Ag nanoparticles embedded in silicate sol–gel network for sensor application towards hydrogen peroxide. J Chem Sci 121:735–743

    Article  CAS  Google Scholar 

  34. Shen J, Yang X, Zhu Y, Kang H, Cao H, Li C (2012) Gold-coated silica–fiber hybrid materials for application in a novel hydrogen peroxide biosensor. Biosens Bioelectron 34:132–136. doi:10.1016/j.bios.2012.01.031

    Article  CAS  Google Scholar 

  35. Prasad BL, Sorensen CM, Klabunde KJ (2008) Gold nanoparticle superlattices. Chem Soc Rev 37:1871–1883. doi:10.1039/B712175J

    Article  CAS  Google Scholar 

  36. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. doi:10.1021/jp026731y

    Article  CAS  Google Scholar 

  37. Jayabal S, Ramaraj R (2013) Synthesis of core/shell Au/Ag nanorods embedded in functionalized silicate sol–gel matrix and their applications in electrochemical sensors. Electrochim Acta 88:51–58. doi:10.1016/j.electacta.2012.10.065

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Department of Science and Technology (DST), New Delhi, is gratefully acknowledged. The HRTEM images were recorded at PSG Institute of Advanced Studies, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Ramaraj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1953 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rameshkumar, P., Ramaraj, R. Gold nanoparticles deposited on amine functionalized silica sphere and its modified electrode for hydrogen peroxide sensing. J Appl Electrochem 43, 1005–1010 (2013). https://doi.org/10.1007/s10800-013-0589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0589-3

Keywords

Navigation