Skip to main content
Log in

Nb as an influential element for increasing the CO tolerance of PEMFC catalysts

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Platinum–niobium catalysts were prepared as candidates for CO tolerant anode catalysts for low and high temperature PEM fuel cells (PEMFCs). Three different compositions were prepared by the formic acid method, from platinum (hexachloroplatinic acid) and niobium (niobium chloride) precursors on Vulcan XC-72R carbon black. Deposition of the niobium was found to be quite difficult, and only a fraction of the desired composition was achieved. Mean particle sizes were all in the nanometric range, between 2 and 3 nm. Diffraction patterns display neither insertion of niobium within the crystalline structure of platinum, nor any crystalline phase associated to that material. Nevertheless, the presence of Nb displays a noticeable effect on the CO tolerance of the catalyst firstly revealed by a reduction of the CO stripping onset potential. Fuel cell results, operating with Nafion® at low temperature (80 °C) and H2 + 100 ppm of CO as fuel, and with H3PO4-doped ABPBI, at high temperature (150 °C) and H2 + 20,000 ppm of CO, display an enhancement in the performance compared to pure platinum, so niobium may be an interesting material for increasing the tolerance to carbon monoxide in PEMFC. Finally, CO/O2 polarisation curves display a decrease in the current density in the presence of Nb, confirming that the enhanced CO tolerance can be attributed to a strong electronic effect that weakens the Pt–CO adsorption strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ellis MW (2001) Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc IEEE 89:1808–1818

    Article  CAS  Google Scholar 

  2. Thomas CE (2008) Fuel cell and battery electric vehicles compared H2Gen Innovations, Inc. Alexandria, Virginia. http://www1.eere.energy.gov/hydrogenandfuelcells/education/pdfs/thomas_fcev_vs_battery_evs.pdf. Accessed 15 Oct 2012

  3. His S (2003) Hydrogen: an energy vector for the future? Panorama 2004

  4. Wurster R, Schindler J. (2010) Solar and wind energy coupled with electrolysis and fuel cells. Handbook of fuel cells, John Wiley & Sons, West Sussex, UK

  5. Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 15:39–49

    Article  Google Scholar 

  6. Xie D, Zhang E, Li R, Zhang Y (2012) Syngas CO cleaning for fuel cell applications by preferential oxidation: catalyst development and reactor design. Int J Low-Carbon Tech doi:10.1093/ijlct/cts056

  7. Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998

    Article  CAS  Google Scholar 

  8. Ciapina EG, Gonzalez ER (2009) Investigation of the electro-oxidation of CO on Pt-based carbon supported catalysts (Pt75Sn25/C, Pt65Ru35/C and Pt/C) by electrochemical impedance spectroscopy. J Electroanal Chem 626:130–142

    Article  CAS  Google Scholar 

  9. Nepel TCM, Lopes PP, Paganin VA, Ticianelli EA (2013) CO tolerance of proton exchange membrane fuel cells with Pt/C and PtMo/C anodes operating at high temperatures: a mass spectrometry investigation. Electrochim Acta 88:217–224

    Article  CAS  Google Scholar 

  10. Pereira LGS, dos Santos FR, Pereira ME, Paganin VA, Ticianelli EA (2006) CO tolerance effects of tungsten-based PEMFC anodes. Electrochim Acta 51:4061–4066

    Article  CAS  Google Scholar 

  11. Santiago EI, Giz MJ, Ticianelli EA (2003) Studies of carbon monoxide oxidation on carbon-supported platinum–osmium electrocatalysts. J Solid State Electrochem 7:607–613

    Article  CAS  Google Scholar 

  12. Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) The CO poisoning effect in PEMFCs operational at temperatures up to 200°C. J Electrochem Soc 150:A1599–A1605

    Article  CAS  Google Scholar 

  13. Bose S, Kuila T, Nguyen TXH, Kim NH, Lau K-T, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843

    Article  CAS  Google Scholar 

  14. Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2012) Poly(2,5-bibenzimidazole) membranes: physico-chemical characterization focused on fuel cell applications. J Electrochem Soc 159:F194–F202

    Article  CAS  Google Scholar 

  15. Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci 280:351–362

    Article  CAS  Google Scholar 

  16. Papageorgopoulos DC, Keijzer M, de Bruijin FA (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204

    Article  CAS  Google Scholar 

  17. Ueda A, Yamada Y, Ioroi T, Fujiwara N, Yauda K, Miyazaki Y, Kobayashi T (2003) Electrochemical oxidation of CO in sulfuric acid solution over Pt and PtRu catalysts modified with TaO x and NbO x . Catal Today 84:223–229

    Article  CAS  Google Scholar 

  18. Konopka DA, Li M, Artyushkova K, Marinkovic N, Sasaki K, Adzic R, Ward TL, Atanassov P (2011) Platinum supported on NbRuyOz as electrocatalyst for ethanol oxidation in acid and alkaline fuel cells. J Phys Chem C 115:3043–3056

    Article  CAS  Google Scholar 

  19. Rocha TA, Linares JJ, Colmati F, Ciapina EG, González ER (2012) Electrocatalytic activity of platinum–niobium nanoparticles for ethanol oxidation. J Electrochem Soc 159:F650–F658

    Article  CAS  Google Scholar 

  20. Orilall MC, Matsumoto F, Zhou Q, Sai H, Abruña HD, DiSalvo FJ, Wiesner U (2009) One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide–carbon composites for fuel cell electrodes. J Am Chem Soc 131:9389–9395

    Article  CAS  Google Scholar 

  21. Justin P, Hari Krishna Charan P, Ranga Rao G (2010) High performance Pt–Nb2O5/C electrocatalysts for methanol electrooxidation in acidic media. Appl Catal B: Environ 100:510–515

    Article  CAS  Google Scholar 

  22. Aranda DAG, Ramos AD, Passos FB, Schmal M (1996) Characterization and dehydrogenation activity of Pt/Nb2O5 catalysts. Catal Today 28:119–125

    Article  CAS  Google Scholar 

  23. Passos FB, Aranda DAG, Soares RR, Schmal M (1998) Effect of preparation method on the properties of Nb2O5 promoted platinum catalysts. Catal Today 43:3–9

    Article  CAS  Google Scholar 

  24. Schmal M, Aranda DAG, Soares RR, Noronha FB, Frydman A (2000) A study of the promoting effect of noble metal addition on niobia and niobia alumina catalysts. Catal Today 57:169–176

    Article  CAS  Google Scholar 

  25. Guerrero S, Miller JT, Wolf EE (2007) Activity and selectivity control by niobium for the preferential oxidation of co on pt supported catalysts. Appl Catal A 328:27–34

    Article  CAS  Google Scholar 

  26. Uchijima T (1996) SMSI effect in some reducible oxides including niobia. Catal Today 28:105–117

    Article  CAS  Google Scholar 

  27. Marques P, Ribeiro NFP, Schmal M, Aranda DAG, Souza MMVM (2006) Selective CO oxidation in the presence of H2 over Pt and Pt–Sn catalysts supported on niobia. J Power Sources 158:504–508

    Article  CAS  Google Scholar 

  28. Zhang L, Wang L, Holt CMB, Zahiri B, Li Z, Malek K, Navessin T, Eikerling MH, Mitlin D (2012) Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEM fuel cells. Energy Environ Sci 5:6156–6172

    Article  CAS  Google Scholar 

  29. Tripković V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J (2012) Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes. ChemCatChem 4:228–235

    Article  Google Scholar 

  30. Bauer A, Hui R, Ignaszak A, Zhang J, Jones DJ (2012) Application of a composite structure of carbon nanoparticles and Nb–TiO2 nanofibers as electrocatalyst support for PEM fuel cells. J Power Sources 210:15–20

    Article  CAS  Google Scholar 

  31. Sun S, Zhang G, Sun X, Cai M, Ruthkosky M (2012) Highly stable and active Pt/Nb-TiO2 carbon-free electrocatalyst for proton exchange membrane fuel cells. J Nanotechnol 2012:8

    Google Scholar 

  32. Bauer A, Chevallier L, Hui R, Cavaliere S, Zhang J, Jones D, Rozière J (2012) Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells. Electrochim Acta 77:1–7

    Article  CAS  Google Scholar 

  33. Bonakdarpour A, Tucker RT, Fleischauer MD, Beckers NA, Brett MJ, Wilkinson DP (2012) Nanopillar niobium oxides as support structures for oxygen reduction electrocatalysts. Electrochim Acta 85:492–500

    Article  CAS  Google Scholar 

  34. Wang Y-J, Wilkinson DP, Guest A, Neburchilov V, Baker R, Nan F, Botton GA, Zhang J (2013) Synthesis of Pd and Nb–doped TiO2 composite supports and their corresponding Pt–Pd alloy catalysts by a two-step procedure for the oxygen reduction reaction. J Power Sources 221:232–241

    Article  CAS  Google Scholar 

  35. Sasaki K, Zhang L, Adzic RR (2008) Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys 10:159–167

    Article  CAS  Google Scholar 

  36. Senevirathne K, Hui R, Campbell S, Ye S, Zhang J (2012) Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction. Electrochim Acta 59:538–547

    Article  CAS  Google Scholar 

  37. Pinheiro ALN, Oliveira-Neto A, de Souza EC, Perez J, Paganin VA, Ticianelli EA, Gonzalez ER (2003) Electrocatalysis on noble metal and noble metal alloys dispersed on high surface area carbon. J New Mater Electrochem Sys 6:1–8

    CAS  Google Scholar 

  38. Smit MA, Ocampo AL, Espinosa-Medina MA, Sebastián PJ (2003) A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J Power Sources 124:59–64

    Article  CAS  Google Scholar 

  39. Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2011) Poly(2,5-benzimidazole) membranes: physico-chemical characterization and high temperature PEMFC application. ECS Trans 41:1579–1593

    Article  CAS  Google Scholar 

  40. Kai T, Matsumura T, Takahashi T (1992) The effect of support structure on CO2 hydrogenation over a rhodium catalyst supported on niobium oxide. Catal Lett 16:129–135

    Article  CAS  Google Scholar 

  41. Alquier C, Vandenborre MT, Henry M (1986) Synthesis of niobium pentoxide gels. J Non-Cryst Solids 79:383–395

    Article  CAS  Google Scholar 

  42. Therwil K, Hooper J (1964) Process for the manufacture of niobium pentoxide or tantalum pentoxide. US Patent 3,133,788

  43. Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599:221–232

    Article  CAS  Google Scholar 

  44. Li H, Lee K, Zhang J (2008) Electrocatalytic H2 oxidation reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Fundamentals and applications, 1st edn. Springer, London, p 145

    Google Scholar 

  45. Vidaković T (2005) Kinetics of methanol electrooxidation on PtRu catalysts in a membrane electrode assembly. Doctorate Thesis. Otto-von-Guericke-Universität Magdeburg

  46. Chun H-J, Kim DB, Lim D-H, Lee W-D, Lee H-I (2010) A synthesis of CO-tolerant Nb2O5-promoted Pt/C catalyst for direct methanol fuel cell; its physical and electrochemical characterization. Int J Hydrogen Energy 35:6399–6408

    Article  CAS  Google Scholar 

  47. Birss VI, Chang M, Segal J (1993) Platinum oxide film formation-reduction: an in situ mass measurement study. J Electroanal Chem 355:181–191

    Article  CAS  Google Scholar 

  48. Modestov AD, Tarasevich MR, Filimonov VY, Davydova ES (2010) CO tolerance and CO oxidation at Pt and Pt–Ru anode catalysts in fuel cell with polybenzimidazole–H3PO4 membrane. Electrochim Acta 55:6073–6080

    Article  CAS  Google Scholar 

  49. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394

    Article  CAS  Google Scholar 

  50. Aranda DAG, Schmal M (1997) Ligand and geometric effects on Pt/Nb2O5 and Pt–Sn/Nb2O5 catalysts. J Catal 171:398–405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors want to thank to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support. In particular, Thairo A. Rocha thanks to the CNPq (Proc. 142146/2012-9) for a Master Degree scholarship, and José J. Linares thanks FAPESP for a post-doctoral fellowship (Proc. 2010/07108-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto R. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, T.A., Ibanhi, F., Colmati, F. et al. Nb as an influential element for increasing the CO tolerance of PEMFC catalysts. J Appl Electrochem 43, 817–827 (2013). https://doi.org/10.1007/s10800-013-0572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0572-z

Keywords

Navigation