Skip to main content

Advertisement

Log in

Spray-deposited NiO x films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Spray deposition followed by sintering of nickel oxide (NiO x ) nanoparticles (average diameter: 40 nm) has been chosen as method of deposition of mesoporous NiO x coatings onto indium tin oxide (ITO) substrates. This procedure allows the scalable preparation of NiO x samples with large surface area (~103 times the geometrical area) and its potential for applications such as electrocatalysis or electrochemical solar energy conversion, which require high electroactivity in confined systems. The potential of these NiO x films as semiconducting cathodes for dye-sensitized solar cell (DSC) purposes has been evaluated for 0.3–3-μm-thick films of NiO x sensitized with erythrosine B (ERY). The electrochemical processes involving the NiO x coatings in the pristine and sensitized states were examined and indicated surface confinement as demonstrated by the linear dependence of the current densities with the scan rate of the cyclic voltammetry. Cathodic polarization of NiO x on ITO can also lead to the irreversible reduction of the underlying ITO substrate because of the mesoporous nature of the sintered NiO x film that allows the shunting of ITO to the electrolyte. ITO-based reduction processes alter irreversibly the properties of charge transfer through the ITO/NiOx interface and limit the range of potential to NiO x coatings sintered for DSC purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nalage SR, Chougule MA, Shashwati S, Joshi PB, Patil VB (2012) Thin Solid Films 520:4835

    Article  CAS  Google Scholar 

  2. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New York

    Book  Google Scholar 

  3. Sato H, Minami T, Takata S, Yamada T (1993) Thin Solid Films 236:27

    Article  CAS  Google Scholar 

  4. Granqvist CG (2007) Sol Energy Mater Sol Cells 91:1529

    Article  CAS  Google Scholar 

  5. Nam KW, Yoon WS, Kim KB (2002) Electrochim Acta 47:3201

    Article  CAS  Google Scholar 

  6. Lang JW, Kong LB, Liu M, Luo YC, Kang L (2010) J Solid State Electrochem 14:1533

    Article  CAS  Google Scholar 

  7. Estrada W, Andersson AM, Granqvist CG, Gorenstein A, Decker F (1991) J Mater Res 6:1715

    Article  CAS  Google Scholar 

  8. Svegl F, Surca-Vuk A, Hajzeri M, Slemenik-Perse L, Orel B Sol (2012) Energy Mater Sol Cells 99:14

    Google Scholar 

  9. Avendaño A, Azens A, Niklasson GA, Granqvist CG (2007) Mater Sci Eng B 138:112

    Article  Google Scholar 

  10. Huang H, Tian J, Zhang WK, Gan YP, Tao XY, Xia XH, Tu JP (2011) Electrochim Acta 56:4281

    Article  CAS  Google Scholar 

  11. Gillaspie D, Norman A, Tracy CE, Pitts JR, Lee SH, Dillon A (2010) J Electrochem Soc 157:H328

    Article  CAS  Google Scholar 

  12. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) Proc Nat Acad Sci 105:2783

    Article  CAS  Google Scholar 

  13. He J, Lindstrom H, Hagfeldt A, Lindquist SE (1999) J Phys Chem B 103:8940

    Article  CAS  Google Scholar 

  14. Nakasa A, Usami H, Sumikura S, Hasegawa S, Koyama T, Suzuki E (2005) Chem Lett 34:500

    Article  CAS  Google Scholar 

  15. Morandeira A, Boschloo G, Hagfeldt A, Hammarström L (2008) J Phys Chem C 112:9530

    Article  CAS  Google Scholar 

  16. Nattestad A, Ferguson M, Kerr R, Cheng YB, Bach U (2008) Nanotechnology 19:295304

    Article  Google Scholar 

  17. Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130:8570

    Article  CAS  Google Scholar 

  18. Li L, Gibson EA, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L (2010) Adv Mater 22:1759

    Article  CAS  Google Scholar 

  19. Nattestad A, Mozer AJ, Fischer MKR, Cheng YB, Mishra A, Bauerle P, Bach U (2010) Nature Mater 9:31

    Article  CAS  Google Scholar 

  20. Awais M, Rahman M, MacElroy JMD, Coburn N, Dini D, Vos JG, Dowling DP (2010) Surf Coat Technol 204:2729

    Article  CAS  Google Scholar 

  21. Wu MS, Wang MJ (2010) Chem Commun 46:6968

    Article  CAS  Google Scholar 

  22. Garduño IA, Alonso JC, Bizarro M, Ortega R, Rodríguez-Fernández L, Ortiz A (2010) J Cryst Growth 312:3276

    Article  Google Scholar 

  23. Jiao Z, Wu M, Qin Z, Xu H (2003) Nanotechnology 14:458

    Article  CAS  Google Scholar 

  24. He J, Lindstrom H, Hagfeldt A, Lindquist SE (2000) Sol Energy Mater Sol Cells 62:265

    Article  CAS  Google Scholar 

  25. Cogan SF, Anderson EJ, Plante TD, Rauh RD (1985) Appl Opt 24:2282

    Article  CAS  Google Scholar 

  26. Bressers PMMC, Meulenkamp EA (1998) J Electrochem Soc 145:2225

    Article  CAS  Google Scholar 

  27. Wang Z, Hu X (2001) Thin Solid Films 392:22

    Article  CAS  Google Scholar 

  28. Awais M, Rahman M, MacElroy JMD, Dini D, Vos JG, Dowling DP (2011) Surf Coat Technol 205:S245

    Article  CAS  Google Scholar 

  29. Halme J, Saarinen J, Lund P (2006) Sol Energy Mater Sol Cells 90:887

    Article  CAS  Google Scholar 

  30. Decker F, Passerini S, Pileggi R, Scrosati B (1992) Electrochim Acta 37:1033

    Article  CAS  Google Scholar 

  31. Masetti E, Dini D, Decker F (1995) Sol Energy Mater Sol Cells 39:301

    Article  CAS  Google Scholar 

  32. Gibson EA, Smeigh AL, Le Pleux L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarström (2009) Angew Chem Int Ed 48:4402

    Article  CAS  Google Scholar 

  33. Mastroianni S, Lanuti A, Penna S, Reale A, Brown TM, Di Carlo A, Decker F (2012) ChemPhysChem, to be published

  34. Boschloo G, Hagfeldt A (2001) J Phys Chem B 105:3039

    Article  CAS  Google Scholar 

  35. Passerini S, Scrosati B, Gorenstein A (1990) J Electrochem Soc 137:3297

    Article  CAS  Google Scholar 

  36. Passerini S, Scrosati B (1994) J Electrochem Soc 141:889

    Article  CAS  Google Scholar 

  37. Armstrong NA, Lin AWC, Masamichi F, Kuwana T (1976) Anal Chem 48:741

    Article  CAS  Google Scholar 

  38. Chippindale AM, Dickens PG, Powell AV (1991) Prog Solid St Chem 21:133

    Article  CAS  Google Scholar 

  39. Whittingham MS, Chen R, Chirayil T, Zavalij P (1997) Solid State Ionics 94:227

    Article  CAS  Google Scholar 

  40. Gerischer H (1990) Electrochim Acta 35:1677

    Article  CAS  Google Scholar 

  41. Bard AJ, Faulkner LR (2001) Electrochemical methods (fundamentals and applications), 2nd edn. John Wiley, New York, p 595

    Google Scholar 

  42. Vera F, Schrebler R, Munoz E, Suarez C, Cury P, Gomez H, Cordova R, Marotti RE, Dalchiele EA (2005) Thin Solid Films 490:182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is based on studies supported by the Science Foundation Ireland for the Solar Energy Conversion Strategic Research Cluster under Grant No. [07/SRC/B1160]. The authors acknowledge the assistance and support of industry partner, Celtic Catalysts Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Dini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awais, M., Dowling, D.D., Rahman, M. et al. Spray-deposited NiO x films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells. J Appl Electrochem 43, 191–197 (2013). https://doi.org/10.1007/s10800-012-0506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0506-1

Keywords

Navigation