Skip to main content
Log in

Effect of pyrolysis temperature on cobalt phthalocyanine supported on carbon nanotubes for oxygen reduction reaction

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract:

Cobalt phthalocyanine (CoPc)-impregnated functionalized multi-walled carbon nanotubes (CNTs) were used as nonprecious electrocatalysts for oxygen reduction reaction (ORR). The electrocatalysts were thermally treated at temperatures ranging from 450 to 850 °C, and the effect of pyrolysis temperature and their relationship to the electrocatalytic activity for ORR were investigated. Thermo gravimetric analysis, X-ray diffraction, and electron microscopy were used to study the thermal stability, crystal structure, and morphology of these catalysts. Cyclic voltammetry and rotating disk electrode results showed that CoPc/CNTs pyrolyzed at a temperature of 550 °C had the highest electrocatalytic activity for ORR, and the catalytic activity decreased with further increase in pyrolysis temperature. X-ray photoelectron spectroscopy showed decrease in functional groups at a temperature higher than 550 °C, correlating with the decreased catalytic activity. The result suggests that oxygen functional groups introduced by acid oxidation for anchoring the CoPc on CNT plays a major role in determining the electrocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Hayre RP, Cha SW, Colella WG, Prinz FB (2008) Fuel cell fundamentals, 2nd edn. Wiley, Hoboken

    Google Scholar 

  2. Wang B (2005) J Power Sources 152:1

    Article  CAS  Google Scholar 

  3. Payne TL, Benjamin TG, Garland NL, Kopasz JP (2008) ECS Trans 16:1081

    Article  CAS  Google Scholar 

  4. Loukrakpam R, Wanjala BN, Yin J, Fang B, Luo J, Shao M, Protsailo L, Kawamura T, Chen Y, Petkov V, Zhong CJ (2011) ACS Catal 1:562

    Article  CAS  Google Scholar 

  5. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Sources 173:891

    Article  CAS  Google Scholar 

  6. Reeve RW, Christensen PA, Dickinson AJ, Hamnett A, Scott K (2000) Electrochim Acta 45:4237

    Article  CAS  Google Scholar 

  7. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755

    Article  CAS  Google Scholar 

  8. Dong G, Huang M, Guan L (2012) Phys Chem Chem Phys 14:2557

    Article  CAS  Google Scholar 

  9. Orellana W (2012) Chem Phys Lett 541:81

    Article  CAS  Google Scholar 

  10. Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Int J Hydrogen Energy 37:4412

    Article  Google Scholar 

  11. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) J Electrochim Acta 53:4937

    Article  CAS  Google Scholar 

  12. Maldonado S, Stevenson KJ (2004) J Phys Chem B 108:11375

    Article  CAS  Google Scholar 

  13. Bron M, Radnik J, Erdmann MF, Bogdanoff P, Fiechter SJ (2002) Electroanal Chem 535:113

    Article  CAS  Google Scholar 

  14. Baker R, Wilkinson DP, Zhang J (2008) Electrochim Acta 53:6906

    Article  CAS  Google Scholar 

  15. Lee K, Zhang L, Liu H, Hui R, Shi Z, Zhang J (2009) Electrochim Acta 54:4704

    Article  CAS  Google Scholar 

  16. Serp P, Corrias M, Kalck P (2003) Appl Catal A Gen 253:337

    Article  CAS  Google Scholar 

  17. Aviles F, Cauich RJV, Moo-Tah L, May PA, Vargas CR (2009) Carbon 47:2970

    Article  CAS  Google Scholar 

  18. Chetty R, Xia W, Kundu S, Bron M, Reinecke T, Schuhmann W, Muhler M (2009) Langmuir 25:3853

    Article  CAS  Google Scholar 

  19. Arechederra RL, Artyushkova K, Atanassov P, Minteer SD (2010) ACS Appl Mater Interfaces 2:3295

    Article  CAS  Google Scholar 

  20. Xu Z, Li H, Cao G, Zhang Q, Li K, Zhao X (2011) J Mol Catal A Chem 335:89

    Article  CAS  Google Scholar 

  21. Lu Y, Reddy RG (2007) Electrochim Acta 52:2562

    Article  CAS  Google Scholar 

  22. Kalvelage H, Mecklenburg A, Kunz U, Hoffmann U (2000) Chem Eng Technol 23:803

    Article  CAS  Google Scholar 

  23. Gouerec P, Savy M, Riga J (1998) Electrochim Acta 43:743

    Article  CAS  Google Scholar 

  24. Lalande G, Faubert G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1996) J Power Sources 61:227

    Article  CAS  Google Scholar 

  25. Li ZP, Liu BH (2010) J Appl Electrochem 40:475

    Article  CAS  Google Scholar 

  26. Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V, Brandl W, Reinecke T, Muhler M (2009) Electrochim Acta 54:4208

    Article  CAS  Google Scholar 

  27. Kundu S, Wang Y, Xia W, Muhler M (2008) J Phys Chem C 112:16869

    Article  CAS  Google Scholar 

  28. Achar BN, Lokesh KS, Fohlen GM, Mohan Kumar TM (2005) React Funct Polym 63:63

    Article  CAS  Google Scholar 

  29. Burgos FV, Utsumi S, Hattori Y, García X, Gordon AL, Kanoh H, Kaneko K, Radovic LR (2012) Fuel 99:106

    Article  Google Scholar 

  30. Lalande G, Cote R, Tamizhmani G, Guay D, Dodelet JP, Dignard BL, Weng LT, Bertrand P (1995) Electrochim Acta 40:2635

    Article  CAS  Google Scholar 

  31. Kobayashi M, Niwa H, Harada Y, Horiba K, Oshima M, Ofuchi H, Terakura K, Ikeda T, Koshigoe Y, Ozaki J, Miyata S, Ueda S, Yamashita Y, Yoshikawa H, Kobayashi K (2011) J Power Sources 196:8346

    Article  CAS  Google Scholar 

  32. Baranton S, Coutanceau C, Roux C, Hahn F, Leger JM (2005) J Electroanal Chem 577:223

    Article  CAS  Google Scholar 

  33. Yu EH, Cheng S, Logan BE, Scott K (2009) J Appl Electrochem 39:705

    Article  CAS  Google Scholar 

  34. Petraki F, Kennoua S (2009) Org Electron 10:1382

    Article  CAS  Google Scholar 

  35. Ahlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Martensson N, Puglia C, Brena B, Nyberg M, Luo Y (2006) J Chem Phys 125:034709

    Article  Google Scholar 

Download references

Acknowledgments

The authors’ sincere thanks go to the Industrial Consultancy and Sponsored Research (IC & SR) and the Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras for the financial support under the New Faculty Scheme. The authors also thank the staff members of the Sophisticated Analytical Instrument Facility (SAIF) at IIT Madras for their assistance with the physical characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuram Chetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramavathu, L.N., Maniam, K.K., Gopalram, K. et al. Effect of pyrolysis temperature on cobalt phthalocyanine supported on carbon nanotubes for oxygen reduction reaction. J Appl Electrochem 42, 945–951 (2012). https://doi.org/10.1007/s10800-012-0481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0481-6

Keywords

Navigation