Skip to main content
Log in

Facile synthesis of graphitic carbons decorated with SnO2 nanoparticles and their application as high capacity lithium-ion battery anodes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A facile and potentially scalable synthesis route to obtain SnO2–carbon composites was developed. SnO2 nanoparticles were deposited on the surface of two types of graphitic carbon: (a) commercial porous graphite (HG) and (b) graphitic carbon nanostructures. The synthesis procedure consists of two simple steps: (i) room temperature formation/deposition of SnO2 nanocrystals and (ii) thermal treatment at 350 °C to generate SnO2 nanoparticles (size ~3.5 nm) over the carbon surface. The electrochemical performance of the graphitic carbons and the SnO2–carbon composites as anode materials in Li-ion rechargeable batteries was investigated. In all cases, tape casting electrode fabrication allowed almost full active material utilization. Good cyclabilities were achieved, with HG and HG–SnO2 showing capacities of 356 and 545 mAh g−1, respectively after 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palacín MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575

    Article  Google Scholar 

  2. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192

    Article  CAS  Google Scholar 

  3. Park CM, Kim JM, Kim H, Sohn HJ (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141

    Article  CAS  Google Scholar 

  4. Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  5. Larcher D, Beattie S, Morcrette M, Edström K, Jumas JC, Tarascon JM (2007) Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem 17:3759–3772

    Article  CAS  Google Scholar 

  6. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  7. Beaulieu LY, Dahn JR (2000) The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying. J Electrochem Soc 147:3237–3241

    Article  CAS  Google Scholar 

  8. Ryu JH, Kim JW, Sung YE, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid State Lett 7:A306–A309

    Article  CAS  Google Scholar 

  9. Saint J, Morcrette M, Larcher D, Laffont L, Beattie S, Pérès JP, Talaga D, Couzi M, Tarascon JM (2007) Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Adv Funct Mater 17:1765–1774

    Article  CAS  Google Scholar 

  10. Sivasankaran V, Marino C, Chamas M, Soudan P, Guyomard D, Jumas JC, Lippens PE, Monconduit L, Lestriez B (2011) Improvement of intermetallics electrochemical behavior by playing with the composite electrode formulation. J Mater Chem 21:5076–5082

    Article  CAS  Google Scholar 

  11. Lestriez B (2010) Functions of polymers in composite electrodes of lithium ion batteries.C R Chimie 13:1341–1350

    Google Scholar 

  12. Li J, Dahn HM, Krause LJ, Le DB, Dahn JR (2008) Impact of binder choice on the performance of α-Fe2O3 as a negative electrode. J Electrochem Soc 155:A812–A816

    Article  CAS  Google Scholar 

  13. Lestriez B, Desaever S, Danet J, Moreau P, Plée D, Guyomard D (2009) Hierarchical and resilient conductive network of bridged carbon nanotubes and nanofibers for high-energy Si negative electrodes. Electrochem Solid State Lett 12:A76–A80

    Article  CAS  Google Scholar 

  14. Jiang C, Ichihara M, Honma I, Zhou H (2007) Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim Acta 52:6470–6475

    Article  CAS  Google Scholar 

  15. Wang Y, Su F, Lee JY, Zhao XS (2006) Crystalline carbon hollow spheres, crystalline carbon−SnO2 Hollow spheres, and crystalline SnO2 hollow spheres: synthesis and performance in reversible Li-ion storage. Chem Mater 18:1347–1353

    Article  CAS  Google Scholar 

  16. Fu Y, Ma R, Shu Y, Cao Z, Ma X (2009) Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater Lett 63:1946–1948

    Article  CAS  Google Scholar 

  17. Du Z, Yin X, Zhang M, Hao Q, Wang Y, Wang T (2010) In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater Lett 64:2076–2079

    Article  CAS  Google Scholar 

  18. Courtel FM, Baranova EA, Abu-Lebdeh Y, Davidson IJ (2010) In situ polyol-assisted synthesis of nano-SnO2/carbon composite materials as anodes for lithium-ion batteries. J Power Sources 195:2355–2361

    Article  CAS  Google Scholar 

  19. Lou XW, Chen JS, Chen P, Archer LA (2009) One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem Mater 21:2868–2874

    Article  CAS  Google Scholar 

  20. Li MY, Liu CL, Wang Y, Dong WS (2011) Simple synthesis of carbon/tin oxide composite as anodes for lithium-ion batteries. J Electrochem Soc 158:A296–A301

    Article  CAS  Google Scholar 

  21. Park CM, Jeon KJ (2011) Porous structured SnSb/C nanocomposites for Li-ion battery anodes.Chem Commun 47:2122–2124

    Google Scholar 

  22. Li MY, Liu CL, Shi MR, Dong WS (2011) Nanostructure Sn–Co–C composite lithium ion battery electrode with unique stability and high electrochemical performance. Electrochim Acta 56:3023–3028

    Article  CAS  Google Scholar 

  23. Chen JS, Cheah YL, Chen YT, Jayaprakash N, Madhavi S, Yang YH, Lou XW (2009) SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J Phys Chem C 113:20504–20508

    Article  CAS  Google Scholar 

  24. Chou SL, Wang JZ, Zhong C, Rahman MM, Liu HK, Dou SX (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54:7519–7524

    Article  CAS  Google Scholar 

  25. Liu H, Long D, Liu X, Qiao W, Zhan L, Ling L (2009) Facile synthesis and superior anodic performance of ultrafine SnO2-containing nanocomposites. Electrochim Acta 54:5782–5788

    Article  CAS  Google Scholar 

  26. Lou XW, Li CM, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539

    Article  CAS  Google Scholar 

  27. Fan J, Wang T, Yu C, Tu B, Yiang Z, Zhao DY (2004) Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv Mater 16:1432–1436

    Article  CAS  Google Scholar 

  28. Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18:645–649

    Article  CAS  Google Scholar 

  29. Paek SM, Yoo EJ, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75

    Article  CAS  Google Scholar 

  30. Sevilla M, Salinas Martınez-de Lecea C, Valdes-Solís T, Morallon E, Fuertes AB (2008) Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. Phys Chem Chem Phys 10:1433–1442

    Article  CAS  Google Scholar 

  31. Cao Y, Cao J, Liu J, Zheng M, Shen K (2007) Sonochemical fabrication and photoluminescence properties of ordered mesoporous carbon–tin oxide nanocomposites. Chem Lett 36:254

    Article  CAS  Google Scholar 

  32. Kruk M, Jaroniec M, Gadkaree KP (1997) Nitrogen adsorption studies of novel synthetic active carbons. J Colloid Interf Sci 192:250–256

    Article  CAS  Google Scholar 

  33. Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89:206–218

    Article  CAS  Google Scholar 

  34. Courtel FM, Niketic S, Duguay D, Abu-Lebdeh Y, Davidson IJ (2011) Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J Power Sources 196:2128–2134

    Article  CAS  Google Scholar 

  35. Ponrouch A, Palacín MR (2011) On the impact of the slurry mixing procedure in the electrochemical performance of composite electrodes for Li-ion batteries: a case study for mesocarbon microbeads (MCMB) graphite and Co3O4. J Power Sources 196:9682–9688

    Google Scholar 

  36. Courtney IA, Dahn JR (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144:2045–2052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support received from the Spanish Ministry of Science and Innovation (MAT2011-24757 and MAT2008-00407). M. S. thanks the Spanish Ministry of Science and Innovation for the award of a Postdoctoral Mobility contract.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. R. Palacín or A. B. Fuertes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponrouch, A., Sevilla, M., Marchante, E. et al. Facile synthesis of graphitic carbons decorated with SnO2 nanoparticles and their application as high capacity lithium-ion battery anodes. J Appl Electrochem 42, 901–908 (2012). https://doi.org/10.1007/s10800-012-0467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0467-4

Keywords

Navigation