Skip to main content
Log in

Au/C catalyst prepared by polyvinyl alcohol protection method for direct alcohol alkaline exchange membrane fuel cell application

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An Au/C catalyst was prepared by means of the polyvinyl alcohol-protected Au sol method. Highly dispersed Au nanoparticles with an average particle size of around 3.7 nm were obtained as confirmed by transmission electron microscopy. The cyclic voltammogram of Au/C was similar to that of a bulk Au electrode, but a small shift of Au oxide reduction and oxidation potential peaks were observed. The electrooxidation of methanol, ethanol, ethylene glycol, and glycerol on the Au/C catalyst in an alkaline solution was analyzed. Using a cyclic voltammogram, the maximum current density toward alcohol electrooxidation was found to decrease in the order of glycerol > ethylene glycol > ethanol, while methanol was not oxidized. Compared with PtRu/C, the maximum current densities obtained from the Au/C catalyst for ethylene glycol and glycerol electrooxidation were increased by 1.6 and 3.3 times, respectively. The reaction heavily progressed through a C–C bond dissociation path. It was found that main product of glycerol electrooxidation was formic acid, which accounted for more than 60 % of the total product. Using chronoamperometry, the Au/C catalyst showed much better stability than that of PtRu/C for the reaction without C–C bond dissociation and better stability for the reaction with C–C bond dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Betowska-brzezinska M, Uczak T, Holze R (1997) J Appl Electrochem 27:999

    Article  Google Scholar 

  2. Lamy C, Belgsir EM, Léger JM (2001) J Appl Electrochem 31:799

    Article  CAS  Google Scholar 

  3. Yougui C, Lin Z, Juntao L (2007) Chin J Catal 28(10):870

    Article  Google Scholar 

  4. Shen PK, Xu C (2006) Electrochem Commun 8:184

    Article  CAS  Google Scholar 

  5. Pattabiraman R (1997) Appl Catal 153:9–20

    Article  CAS  Google Scholar 

  6. Change S, Ho Y, Weaver MJ (1991) J Am Chem Soc 113:9506

    Article  Google Scholar 

  7. Zhang JH, Liang YJ, Li N, Li ZY, Xu CW, Jiang SP (2012) Electrochim Acta 59:156–159

    Article  CAS  Google Scholar 

  8. Avramov-Ivić M, Jovanović V, Vlajnić G, Popić J (1997) J Electroanal Chem 423:119

    Article  Google Scholar 

  9. Avramov-Ivić M, Štrbac S, Mitrović V (2001) Electrochim Acta 46:3175

    Article  Google Scholar 

  10. Weng Y, Chou T (2003) J Electrochem Soc 150(6):C385

    Article  CAS  Google Scholar 

  11. Kim J, Park S (2003) J Electrochem Soc 150(11):E560

    Article  CAS  Google Scholar 

  12. Tarasevich MR, Karichev ZR, Bogdanovskaya VA, Kapustin AV, Lubnin EN, Osina MA (2005) Russ J Electrochem 41(7):829

    Google Scholar 

  13. Bunazawa H, Yamazaki Y (2009) J Power Sour 190:210

    Article  CAS  Google Scholar 

  14. Yang Y, Zhou Y, Cha C (1995) Electrochim Acta 40(16):2579

    Article  CAS  Google Scholar 

  15. Prakash J, Joachin H (2000) Electrochim Acta 45:2289

    Article  CAS  Google Scholar 

  16. Shao MH, Adzic RR (2005) J Phys Chem B 109:16563

    Article  CAS  Google Scholar 

  17. Blizanac BB, Ross PN, Markovic NM (2007) Electrochim Acta 52:2264

    Article  CAS  Google Scholar 

  18. Demarconnay L, Contauceau C, Léger JM (2004) Electrochim Acta 49:4513

    Article  CAS  Google Scholar 

  19. Varcoe JR, Slade RCT, Wright GL, Chen Y (2006) J Phys Chem B 110:21041

    Article  CAS  Google Scholar 

  20. Ling NH, Prestat M, Gautier JL, Koenig JF, Poillerat G, Chartier P (1996) Electrochim Acta 42(2):197

    Article  Google Scholar 

  21. Lima FHB, Calegaro ML, Ticianelli EA (2006) J Electroanal Chem 590:152

    Article  CAS  Google Scholar 

  22. Borkowska Z, Tymosiak-Zielinska A, Shul G (2004) Electrochim Acta 49:1209

    Article  CAS  Google Scholar 

  23. Tremiliosi-Filho G, Gonzalez ER, Motheo AJ, Belgsir EM, Léger JM, Lamy C (1998) J Electroanal Chem 444:31

    Article  CAS  Google Scholar 

  24. Kwon Y, Koper MTM (2010) Anal Chem 82(13):5420

    Article  CAS  Google Scholar 

  25. Hamelin A, Ho Y, Chang S, Gao X, Weaver MJ (1992) Langmuir 8:975

    Article  CAS  Google Scholar 

  26. Simões M, Barenton S, Contanceau C (2010) Appl Catal B Environ 93:354

    Article  Google Scholar 

  27. Chen W, Tang Y, Bao J, Gao Y, Liu C, Xing W, Lu T (2007) J Power Sour 167:315

    Article  CAS  Google Scholar 

  28. Inasaki T, Kobayashi S (2009) Electrochim Acta 54:4893

    Article  CAS  Google Scholar 

  29. Shao MH, Adzic RR (2005) J Phys Chem B Lett 109:16563

    CAS  Google Scholar 

  30. Tang W, Lin H, Kleiman-Shwarsctein A, Stucky GD, McFarland EW (2008) J Phys Chem C 112:10515

    Article  CAS  Google Scholar 

  31. El-Deab M, Ohsaka T (2002) Electrochim Acta 47:4255

    Article  CAS  Google Scholar 

  32. Hui R, Fergus J, Li X (2010) Proton exchange membrane fuel cells: materials properties and performance. CRC Press, New York

    Google Scholar 

  33. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2006) J Power Sour 156:345

    Article  CAS  Google Scholar 

  34. Wongyao N, Therdthianwong A, Therdthianwong S (2010) Fuel 89:971

    Article  CAS  Google Scholar 

  35. Porta F, Prati L, Rossi M, Scari G (2002) J Catal 211:464

    CAS  Google Scholar 

  36. Tremiliosi-Filho G, Dall’Antonia LH, Jerkiewicz G (1996) J Electroanal Chem 422:149

    Google Scholar 

  37. Kwon Y, Lai SCS, Rodriquez P, Koper MTM (2011) J Am Chem Soc 133:6914

    Article  CAS  Google Scholar 

  38. Lopez N, Jbanssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligard T, Nørskov JK (2004) J Catal 223:232

    Article  CAS  Google Scholar 

  39. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau, Léger JM (2002) J Power Sour 105:283

    Article  CAS  Google Scholar 

  40. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Electrochim Acta 51:1085

    Article  CAS  Google Scholar 

  41. Abild-Pedersen F, Andersson MP (2007) Surf Sci 601:1747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports for this research from the National Nanotechnology Center of Thailand (NANOTEC), and the Joint Graduate School of Energy and Environment (JGSEE) are greatly appreciated. The first author would like to thank the Thailand Research Fund (TRF) for the Royal Golden Jubilee (RGJ) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Therdthianwong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongprapat, S., Therdthianwong, A. & Therdthianwong, S. Au/C catalyst prepared by polyvinyl alcohol protection method for direct alcohol alkaline exchange membrane fuel cell application. J Appl Electrochem 42, 483–490 (2012). https://doi.org/10.1007/s10800-012-0423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0423-3

Keywords

Navigation