Skip to main content
Log in

Electrochemical investigation of the roles of oxyanions in chemical–mechanical planarization of tantalum and tantalum nitride

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrate, sulfate, and phosphate oxyanions are shown to serve as effective surface-modifying agents for low-pressure chemical–mechanical planarization (CMP) of Ta and TaN barrier layers of interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated using cyclic voltammetry, open circuit potential and polarization resistance measurements, and impedance spectroscopy. The results suggest that forming structurally weak layers of surface oxides is crucial to chemically controlling the CMP of Ta/TaN at low polish-pressures. It is shown that in oxyanion-based slurries, this can be accomplished by modifying the sample surfaces with anion-incorporated oxide films of Ta or TaN, which, in turn, can readily be removed with moderate abrasion. Electrochemical results elaborate the reaction mechanisms that lead to anion-modified oxides, such as Ta2O5(1−x)(NO3)10x , Ta2O5(1−x)(SO4)5x , and Ta2O5(1−x)(PO4)10x/3 on both Ta and TaN surfaces in pH-controlled solutions of KNO3, K2SO4, and KH2PO4 solutions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Krishnan M, Nalaskowski JW, Cook LM (2010) Chem Rev 10:178

    Article  Google Scholar 

  2. The International Technology Roadmap for Semiconductors: http://www.itrs.net/Links/2009ITRS/Home2009.htm

  3. Chang TC, Mor YS, Liuc PT, Tsabi TM, Chenb CW, Meid YJ, Sze SM (2001) Thin Solid Films 398:523

    Article  Google Scholar 

  4. Surisetty CVVS (2010) PhD Thesis, Clarkson University

  5. Surisetty CVVS, Peethala BC, Roy D, Babu SV (2010) Electrochem Solid-State Lett 13:H244

    Article  CAS  Google Scholar 

  6. Stansbury EE, Buchanan RA (2000) Fundamentals of electrochemical corrosion. ASM International, Materials Park

    Google Scholar 

  7. Fontana MG (1986) Corrosion engineering. McGraw Hill, New York

    Google Scholar 

  8. Sulyma CM, Roy D (2010) Appl Surf Sci 256:2583

    Article  CAS  Google Scholar 

  9. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications. Wiley, New York

    Book  Google Scholar 

  10. Zheng JP, Klug BK, Roy D (2008) J Electrochem Soc 155:H341

    Article  CAS  Google Scholar 

  11. Garland JE, Pettit CM, Roy D (2004) Electrochim Acta 49:2623

    Article  CAS  Google Scholar 

  12. Sulyma CM (2010) PhD Thesis, Clarkson University

  13. Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (1998) Corros Sci 40:963

    Article  CAS  Google Scholar 

  14. Wood GC, Skeldon P, Thompson GE, Shimizu K (1996) J Electrochem Soc 143:74

    Article  CAS  Google Scholar 

  15. Lu Q, Skeldon P, Thompson GE, Masheder D, Habazaki H, Shimizu K (2004) Corros Sci 46:2817

    Article  CAS  Google Scholar 

  16. Kerrec O, Devilliers D, Groult H, Chemla M (1995) Electrochim Acta 40:719

    Article  CAS  Google Scholar 

  17. Assiongbon KA, Emery SB, Pettit CM, Babu SV, Roy D (2004) Mater Chem Phys 86:347

    Article  CAS  Google Scholar 

  18. Young L (1961) Anodic oxide films. Academic, New York

    Google Scholar 

  19. Bartels C, Schultze JW, Stimming U, Habib MA (1982) Electrochim Acta 27:129

    Article  CAS  Google Scholar 

  20. Hug SJ (1997) J Colloid Interface Sci 188:415

    Article  CAS  Google Scholar 

  21. Weber M, Nart FC, de Moraes IR (1996) J Phys Chem 100:19933–19938

    Article  CAS  Google Scholar 

  22. Goldberg S, Sposito G (1985) Commun Soil Sci Plant Anal 16:801

    Article  CAS  Google Scholar 

  23. Milazzo G, Caroli S (1978) Tables of standard electrode potentials. Wiley, New York

    Google Scholar 

  24. Goonetilleke PC, Roy D (2005) Mater Chem Phys 94:388

    Article  CAS  Google Scholar 

  25. Pagitsas M, Diamantopoulou A, Sazou D (2001) Electrochem Commun 3:330

    Article  CAS  Google Scholar 

  26. Sulyma CM, Roy D (2010) Corros Sci 52:3086

    Article  CAS  Google Scholar 

  27. Pell WG, Zolfaghari A, Conway BE (2002) J Electroanal Chem 532:13

    Article  CAS  Google Scholar 

  28. Majima M, Awakura Y, Yazaki T, Chikamori Y (1980) Metall Trans B 11:209

    Article  CAS  Google Scholar 

  29. Martyak NM, Ricou P (2004) Mater Chem Phys 84:87

    Article  CAS  Google Scholar 

  30. Wang YS, Lee WH, Wang YL, Hung CC, Chang SC (2008) J Phys Chem Solids 69:601

    Article  CAS  Google Scholar 

  31. Cuong ND, Kim DJ, Kang BD, Kim CS, Yu KM, Yoon SG (2006) J Electrochem Soc 153:G164

    Article  CAS  Google Scholar 

  32. Min KH, Chun KC, Kim KB (1996) J Vac Sci Tech B 14:3263

    Article  CAS  Google Scholar 

  33. Ritala M, Kalsi P, Riihelä D, Kukli K, Leskelä M, Jokinen J (1999) Chem Mater 11:1712

    Article  CAS  Google Scholar 

  34. Wang Z, Yaegashi O, Sakaue H, Takahagi T, Shingubara S (2003) J Appl Phys 94:4697

    Article  CAS  Google Scholar 

  35. Liao CN, Liou KM (2005) J Vac Sci Tech A23:359

    Google Scholar 

  36. Chung HC, Liu CP (2006) Surf Coat Tech 200:3122

    Article  CAS  Google Scholar 

  37. Kuo YL, Huang JJ, Lin ST, Lee C, Lee WH (2003) Mater Chem Phys 80:690

    Article  CAS  Google Scholar 

  38. Arranz A, Palacio C (1994) Vacuum 45:1091

    Article  CAS  Google Scholar 

  39. Ibidunni AO, MaSaitis RL, Opila RL, Davenport AJ, Isaacs HS, Taylor JA (1993) Surf Interface Anal 20:559

    Article  CAS  Google Scholar 

  40. Janjam SVSB, Peethala BC, Roy D, Babu SV (2010) Electrochem Solid-State Lett 13:H1

    Article  CAS  Google Scholar 

  41. Walters MJ, Pettit CM, Roy D (2001) Phys Chem Chem Phys 3:570

    Article  CAS  Google Scholar 

  42. Goonetilleke PC, Roy D (2008) Appl Surf Sci 254:2696

    Article  CAS  Google Scholar 

  43. McCafferty E, Wightman JP (1977) J Colloid Interface Sci 194:344

    Article  Google Scholar 

  44. Kosmulski M (2004) J Colloid Interface Sci 275:214

    Article  CAS  Google Scholar 

  45. Kosmulski M (1997) Langmuir 13:6315

    Article  CAS  Google Scholar 

  46. Vermilyea A (1965) J Electrochem Soc 112:1232

    Article  CAS  Google Scholar 

  47. Mikolajick T, Kühnhold R, Ryssel H (1997) Sens Actuators B 44:262

    Article  Google Scholar 

  48. Ammar IA, Ismail IK (1972) Mater Corrs 23:168

    Article  CAS  Google Scholar 

  49. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, New York

    Book  Google Scholar 

  50. Janjam SSB, Peethala BC, Zheng JP, Babu SV, Roy D (2010) Mater Chem Phys 123:521

    Article  CAS  Google Scholar 

  51. Hiemstra T, Van Riemsdijk WH (1999) J Colloid Interface Sci 210:182

    Article  CAS  Google Scholar 

  52. Melendres CA, Hahn F, Bowmaker GA (2000) Electrochim Acta 46:9

    Article  CAS  Google Scholar 

  53. Sung YE, Bard, AJ (1998) J Phys Chem B 102:9806

    Google Scholar 

Download references

Acknowledgments

This study was funded in part by the Semiconductor Research Corporation through IBM and by Clarkson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulyma, C.M., Pettit, C.M., Surisetty, C.V.V.S. et al. Electrochemical investigation of the roles of oxyanions in chemical–mechanical planarization of tantalum and tantalum nitride. J Appl Electrochem 41, 561–576 (2011). https://doi.org/10.1007/s10800-011-0262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0262-7

Keywords

Navigation