Skip to main content
Log in

Improved performance of the direct methanol redox fuel cell

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Advancements in the performance of the direct methanol redox fuel cell (DMRFC) were made through anolyte/catholyte composition and cell temperature studies. Catholytes prepared with different iron salts were considered for use in the DMRFC in order to improve the catholyte charge density (i.e., iron salt solubility) and fuel cell performance. Following an initial screening of different iron salts, catholytes prepared with FeNH4(SO4)2, Fe(ClO4)3 or Fe(NO3)3 were selected and evaluated using electrolyte conductivity measurements, cyclic voltammetry and fuel cell testing. Solubility limits at 25 °C were observed to be much higher for the Fe(ClO4)3 (>2.5 M) and Fe(NO3)3 (>3 M) salts than FeNH4(SO4)2 (~1 M). The Fe(ClO4)3 catholyte was identified as a suitable candidate due to its high electrochemical activity, electrochemical reversibility, observed half-cell potential (0.83 V vs. SHE at 90 °C) and solubility. DMRFC testing at 90 °C demonstrated a substantial improvement in the non-optimized power density for the perchlorate system (79 mW cm−2) relative to that obtained for the sulfate system (25 mW cm−2). Separate fuel cell tests showed that increasing the cell temperature to 90 °C and increasing the methanol concentration in the anolyte to 16.7 M (i.e., equimolar H2O/CH3OH) yield significant DMRFC performance improvements. Stable DMRFC performance was demonstrated in short-term durability tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) J Power Sources 127:112

    Article  CAS  Google Scholar 

  2. Kamarudin SK, Daud WRW, Ho SL, Hasran UA (2007) J Power Sources 163:743

    Article  CAS  Google Scholar 

  3. McNicol BD, Rand DAJ, Williams KR (1999) J Power Sources 83:15

    Article  CAS  Google Scholar 

  4. Litster S, Buie CR, Fabian T, Eaton JK, Santiago JG (2007) J Electrochem Soc 154:1049

    Article  Google Scholar 

  5. Adzakpa KP et al (2008) J Power Sources 179:164

    Article  CAS  Google Scholar 

  6. Jiang R, Chu D (2008) J Electrochem Soc 155:B798

    Article  CAS  Google Scholar 

  7. Ge JB, Liu HT (2005) J Power Sources 142:56

    Article  CAS  Google Scholar 

  8. Liu JG, Zhao TS, Chen R, Wong CW (2005) Electrochem Commun 7:288

    Article  CAS  Google Scholar 

  9. Sister VG, Fateev VN, Bokach DA (2007) Russ J Electrochem 43:1097

    Article  CAS  Google Scholar 

  10. Lindermeir A, Rosenthal G, Kunz U, Hoffmann U (2004) J Power Sources 129:180

    Article  CAS  Google Scholar 

  11. Carretta N, Tricoli V, Picchioni F (2000) J Membr Sci 166:189

    Article  CAS  Google Scholar 

  12. Sungpet A (2003) J Membr Sci 226:131

    Article  CAS  Google Scholar 

  13. Lam A, Wilkinson DP, Jiujun Z (2005) Proton exchange membrane fuel cells, vol 1. The Electrochemical Society Proceedings Series, Pennington, NJ, pp 273–281

  14. Hikita S, Yamane K, Nakajima Y (2001) JSAE Rev 22:151

    Article  CAS  Google Scholar 

  15. Wilkinson DP, Johnson MC, Colbow KM, Campbell SA (1997) US Patent No 5,672,439

  16. Shukla AK, Raman RK (2003) Ann Rev Mater Res 33:155

    Article  CAS  Google Scholar 

  17. Gojkovic SLj, Gupta S, Savinell RF (1999) J Electroanal Chem 462:63

    Article  CAS  Google Scholar 

  18. Tributsch H, Bron M, Hilgendorff M, Schulenburg H, Dorbandt I (2001) J Appl Electrochem 31:739

    Article  CAS  Google Scholar 

  19. Fatih K, Wilkinson DP, Moraw F, Girard F (2005) Electrocatalysis 11:341

    Google Scholar 

  20. Fatih K, Wilkinson DP, Moraw F, Ilicic A, Girard F (2008) Electrochem Solid-State Lett 11:B11

    Article  CAS  Google Scholar 

  21. Adams GB, Hollandsworth RP, Bennion DN (1975) J Electrochem Soc 122:1043

    Article  CAS  Google Scholar 

  22. Mazuelos A, Carranza F, Palencia I, Romero R (2000) Hydrometallurgy 58:269

    Article  CAS  Google Scholar 

  23. Ilicic AB, Wilkinson DP, Fatih K, Girard F (2008) J Electrochem Soc 155:B1322

    Article  CAS  Google Scholar 

  24. Ilicic AB, Wilkinson DP, Fatih K, Girard F (2008) ECS Trans 16:1549

    Article  CAS  Google Scholar 

  25. Wen YH et al (2006) J Electrochem Soc 153:929

    Article  Google Scholar 

  26. Lide DR (2005) CRC handbook of chemistry and physics. CRC Press LLC, Boca Raton

    Google Scholar 

  27. Speigt JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  28. Casas JM, Crisostomo G, Cifuentes L (2005) Hydrometallurgy 80:254

    Article  CAS  Google Scholar 

  29. Ottley CJ, Davison W, Edmunds WM (1997) Geochim Cosmochim Acta 61:1819

    Article  CAS  Google Scholar 

  30. Mendiratta SK, Dotson RL, Brooker RT (2005) Kirk-Othmer encyclopedia of chemical technology. Wiley-Interscience, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Research Council, Institute for Fuel Cell Innovation (NRC-IFCI) and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support. The NRC-IFCI assisted in meeting the publication costs of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilicic, A.B., Dara, M.S., Wilkinson, D.P. et al. Improved performance of the direct methanol redox fuel cell. J Appl Electrochem 40, 2125–2133 (2010). https://doi.org/10.1007/s10800-010-0194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0194-7

Keywords

Navigation