Skip to main content
Log in

Research on methanol-tolerant catalysts for the oxygen reduction reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Direct methanol fuel cells (DMFCs) generate electricity in a clean and efficient way, so they are a valuable alternative to traditional environmentally harmful technologies. Portable power sources are one of the applications of passive DMFCs. One of the requirements in these devices is the use of high alcohol concentration. Methanol permeation across the polymer electrolyte membrane (methanol crossover) causes a loss of fuel cell efficiency as the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) occur simultaneously at the cathode. To develop methanol-tolerant catalysts with suitable activity, different PtM/C and PtMRu/C combinations with M = Co or Fe were prepared by a modified impregnation method. The synthesized catalysts were studied to determine the role of the components in enhancing the ORR and simultaneously discouraging the MOR. The materials were characterized by TEM, XPS and EDS. Well-distributed particles for all the catalysts were shown by TEM. XPS spectra revealed that the method produces a great amount of metallic Pt. The electrochemical characterization was carried out by linear sweep voltammetry and cyclic voltammetry, in a three-electrode electrochemical cell with a glassy carbon rotating disk electrode covered with a thin catalytic layer and a Nafion® film as the working electrode. Binary and ternary catalysts have a good activity for the ORR. However, the enhanced activity of binary catalysts is lost when the ORR is studied in the presence of methanol. Ternary catalysts containing Ru showed higher methanol-tolerance, regardless of the composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corti HR, Gonzalez ER (2014) Direct alcohol fuel cells materials, performance, durability and applications. Springer, Amsterdam. doi:10.1007/978-94-007-7708-8

    Book  Google Scholar 

  2. Aricò AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Liu H, Zhang J (eds) Electrocatalysis of direct methanol fuel cells: from fundamentals to applications. Wiley, Weinheim, pp 1–78. doi:10.1002/9783527627707.ch1

    Chapter  Google Scholar 

  3. Faghri A, Guo Z (2008) An innovative passive DMFC technology. Appl Therm Eng 28:1614–1622. doi:10.1016/j.applthermaleng.2007.10.024

    Article  CAS  Google Scholar 

  4. Baglio V, Antonucci V, Aricò AS (2010) Status of technology and perspectives for portable applications of direct methanol fuel cells. In: Pignataro B (ed) Ideas in Chemistry and Molecular Sciences: Advances in Nanotechnology, Materials and Devices. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/9783527630530.ch11

  5. Zhao TS, Chen R, Yang WW, Xu C (2009) Small direct methanol fuel cells with passive supply of reactants. J Power Sources 191:185–202. doi:10.1016/j.jpowsour.2009.02.033

    Article  CAS  Google Scholar 

  6. Baglio V, Stassi A, Matera FV, Antonucci V, Aricò AS (2009) Investigation of passive DMFC mini-stacks at ambient temperature. Electrochim Acta 54:2004–2009. doi:10.1016/j.electacta.2008.07.061

    Article  CAS  Google Scholar 

  7. Murthi VS, Urian RC, Mukerjee S (2004) Oxygen reduction kinetics in low and medium temperature acid environment: correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J Phys Chem B 108:11011–11023. doi:10.1021/jp048985k

    Article  CAS  Google Scholar 

  8. Gasteiger HA, Kocha SS, Sompalli S, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloys, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35. doi:10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  9. van der Vlie DF, Wang C, Li D, Paulikas AP, Greeley J, Rankin RB, Strmcnik D, Tripkovic D, Markovic NM, Stamenkovic VR (2012) Unique electrochemical adsorption properties of Pt-skin surfaces. Angew Chem Int Ed 51:3139–3142. doi:10.1002/anie.201107668

    Article  Google Scholar 

  10. Yang J, Zhou W, Cheng CH, Lee JL, Liu Z (2010) Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst. ACS Appl Mater Interfaces 2:119–126. doi:10.1021/am900623e

    Article  CAS  Google Scholar 

  11. Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloys Compd 461:253–262. doi:10.1016/j.jallcom.2007.06.077

    Article  CAS  Google Scholar 

  12. Asteazaran M, Bengió S, Triaca WE, Castro Luna AM (2014) Methanol tolerant electrocatalysts for the oxygen reduction reaction. J Appl Electrochem 44:1271–1278. doi:10.1007/s10800-014-0748-1

    Article  CAS  Google Scholar 

  13. Spanos I, Kirkensgaard JJK, Mortensen K, Arenz M (2014) Investigating the activity enhancement on PtxCo1−x alloys induced by a combined strain and ligand effect. J Power Sources 245:908–914. doi:10.1016/j.jpowsour.2013.07.023

    Article  CAS  Google Scholar 

  14. Bonesi AR, Moreno MS, Triaca WE, Castro Luna AM (2010) Modified catalytic materials for ethanol oxidation. Int J Hydrogen Energy 35:5999–6004. doi:10.1016/j.ijhydene.2009.12.093

    Article  CAS  Google Scholar 

  15. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145. doi:10.1016/S0022-0728(00)00407-1

    Article  CAS  Google Scholar 

  16. Aricò AS, Shukla A, Kim H, Park S, Min M, Antonucci V (2001) An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl Surf Sci 172:33–40. doi:10.1016/S0169-4332(00)00831-X

    Article  Google Scholar 

  17. Jung MC, Kim HD, Han M, Jo W, Kim DC (1999) X-ray photoelectron spectroscopy study of Pt-oxide thin films deposited by reactive sputtering using O2/Ar gas mixtures. Jpn J Appl Phys 38:4872–4875. doi:10.1143/JJAP.38.4872

    Article  CAS  Google Scholar 

  18. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CS, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247. doi:10.1038/nmat1840

    Article  CAS  Google Scholar 

  19. Wang C, Wang G, van der Vliet D, Chang KC, Markovic NM, Stamenkovic VR (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys Chem Chem Phys 12:6933–6939. doi:10.1039/c000822b

    Article  CAS  Google Scholar 

  20. Castro Luna AM, Bonesi A, Triaca WE, Baglio V, Antonucci V, Aricò AS (2008) Pt–Fe cathode catalysts to improve the oxygen reduction reaction and methanol tolerance in direct methanol fuel cells. J Solid State Electrochem 12:643–649. doi:10.1007/s10008-007-0334-0

    Article  CAS  Google Scholar 

  21. Raman RK, Shukla AK, Gayen A, Hegde MS, Priolkar KR, Sarode PR, Emura S (2006) Tailoring a Pt–Ru catalyst for enhanced methanol electro-oxidation. J Power Sources 157:45–55. doi:10.1016/j.jpowsour.2005.06.031

    Article  CAS  Google Scholar 

  22. Long JW, Stroud RM, Swider-Lyons KE, Rolison DR (2000) How to make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys! J Phys Chem B 104:9772–9776. doi:10.1021/jp001954e

    Article  CAS  Google Scholar 

  23. Raman RK, Shukla AK, Gayen A, Hegde MS, Priolkar KR, Sarode PR, Emura S (2006) Tailoring a Pt–Ru catalyst for enhanced methanol electro-oxidation. J Power Sources 157:45–55. doi:10.1016/j.jpowsour.2005.06.031

    Article  CAS  Google Scholar 

  24. Salgado JRC, Antolini E, Gonzalez ER (2005) Carbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells. Appl Catal B 57:283–290. doi:10.1016/j.apcatb.2004.11.009

    Article  CAS  Google Scholar 

  25. Cho YH, Kimb OH, Chung DY, Choe H, Choc YH, Sung YE (2014) PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell. Appl Catal B 154–155:309–315. doi:10.1016/j.apcatb.2014.02.016

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), and Universidad Tecnológica Nacional (UTN-FRLP). AMCL is member of the research career at CIC. GC and MA acknowledge financial support through a Ph.D fellowship from CIC and CONICET, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Castro Luna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asteazaran, M., Cespedes, G., Bengió, S. et al. Research on methanol-tolerant catalysts for the oxygen reduction reaction. J Appl Electrochem 45, 1187–1193 (2015). https://doi.org/10.1007/s10800-015-0845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0845-9

Keywords

Navigation