Skip to main content
Log in

Effects of the geometry and operating temperature on the stability of Ti/IrO2–SnO2–Sb2O5 electrodes for O2 evolution

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ternary IrO2–Sb2O5–SnO2 anode has shown its superiorities over IrO2 and many other electrocatalysts for O2 evolution, in terms of electrochemical stability, activity and cost. The performance of IrO2–Sb2O5–SnO2 anodes is affected by its electrochemical properties and operating conditions. In this paper, the electrochemical stability and activity of the Ti/IrO2–Sb2O5–SnO2 anodes prepared with three different geometries were investigated under different operating conditions. It was found that anodes with large mean curvature have high electrochemical stability. Although increasing temperature results in a decrease in the stability of Ti/IrO2–Sb2O5–SnO2, the anode with a mean curvature of 200 m−1 still shows acceptable service life even at 70 °C. This tolerance of high temperature was attributed to the thermal expansion difference between the substrate and the coating layer, the redox window for Ir(V)/Ir(IV) conversion, and the redox reversibility of Sb and Sn species in the coating layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beer HB, Hinden JM (1982) USA patent 4331528

  2. Beer HB (1972) USA patent 3632498

  3. Beer HB (1973) USA patent 3771385

  4. Beer HB (1980) J Electrochem Soc 127:303C

    Article  CAS  Google Scholar 

  5. Novak DM, Tilak BV, Conway BE (1982) In: Bockris JO, Conway BE, White RE (eds) Modern aspects of electrochemistry. Plenum Press, New York, pp 195–318

    Google Scholar 

  6. Burke LD, Murphy OJ, O’Neill JF, Venkatesan S (1977) J Chem Soc Faraday Trans 73:1659

    CAS  Google Scholar 

  7. Loucka T (1977) J Appl Electrochem 7:211

    Article  CAS  Google Scholar 

  8. Burke LD, McCarthy M (1984) Eletrochim Acta 29:211

    Article  CAS  Google Scholar 

  9. Iwakura C, Sakamoto K (1985) J Electrochem Soc 132:2420

    Article  CAS  Google Scholar 

  10. Chen X, Chen G (2005) Electrochim Acta 50:4155

    Article  CAS  Google Scholar 

  11. Alves VA, Silva LAD, Oliveira ED, Boodts JFC (1998) Mater Sci Forum 655:289

    Google Scholar 

  12. Stucki S, Muller R (1981) In: Veziroglu TN, Fueki K, Ohta T (eds) Hydrogen energy progress (Proceedings of the 3rd world hydrogen energy conference, Tokyo, 1980), Pergamon Press, Oxford

  13. Hutchings R, Muller K, Kotz F, Stucki S (1984) J Mater Sci 19:3987

    Article  CAS  Google Scholar 

  14. Rolewicz J, Comninellis Ch, Plattner E, Hinden J (1988) Electrochim Acta 33:573

    Article  CAS  Google Scholar 

  15. Comninellis Ch, Vercesi GP (1991) J Appl Electrochem 21:335

    Article  CAS  Google Scholar 

  16. Vercesi GP, Rolewicz F, Comninellis Ch (1991) Electrochim Acta 176:31

    CAS  Google Scholar 

  17. Balko EN, Nguyen PH (1991) J Appl Electrochem 21:678

    Article  CAS  Google Scholar 

  18. Cardarelli F, Taxil P, Savall A, Comninellis Ch, Manoli G, Leclerc OJ (1998) J Appl Electrochem 28:245

    Article  CAS  Google Scholar 

  19. Chen X, Chen G, Yue PL (2001) J Phys Chem B 105:4623

    Article  CAS  Google Scholar 

  20. Chen X, Chen G (2005) J Electrochem Soc 152:J59

    Article  CAS  Google Scholar 

  21. Hine F, Yasuda M, Noda T, Yoshida T, Okuda J (1979) J Electrochem Soc 126:1439

    Article  CAS  Google Scholar 

  22. Fierro S, Nagel T, Baltruschat H, Comninellis Ch (2007) Electrochem Comm 9:1969

    Article  CAS  Google Scholar 

  23. Comninellis Ch, Vercesi GP (1991) J Appl Electrochem 21:136

    Article  CAS  Google Scholar 

  24. Chen G, Chen X, Yue PL (2002) J Phys Chem B 106:4364

    Article  CAS  Google Scholar 

  25. Huppauff M, Lengeler BJ (1993) Electrochem Soc 140:598

    Article  Google Scholar 

  26. Mousty C, Foti G, Comninellis Ch, Reid V (1999) Electrochim Acta 45:451

    Article  CAS  Google Scholar 

  27. Chen X, Chen G, Yue PL (2002) Environ Sci Technol 36:778

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, X., Gao, F. & Chen, G. Effects of the geometry and operating temperature on the stability of Ti/IrO2–SnO2–Sb2O5 electrodes for O2 evolution. J Appl Electrochem 40, 1797–1805 (2010). https://doi.org/10.1007/s10800-010-0154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0154-2

Keywords

Navigation