Skip to main content
Log in

Acetaminophen and Thiosalicylic Acid Sensor Based on Carbon Paste Electrode Modified with Multi-Walled Carbon Nanotubes and Natural Deep Eutectic Solvent

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and natural deep eutectic solvent (NADES) was prepared and applied for the simultaneous voltammetric determination of acetaminophen (ACP) and thiosalicylic acid (TSA) in real samples. Electrochemical impedance spectroscopy (EIS) was applied for investigation of electron transfer rate of [Fe(CN)6]3-/4- as a redox couple probe on the MWCNTs/NADES/CPE surface. The modified electrode preserved and combined the properties of individual modifiers synergistically. Significant enhancement in the peak current responses of ACP and TSA were observed at the modified electrode compared to the bare electrode. Under the optimal conditions, a linear dynamic range of 5–2900 μM for ACP and 5–2250 μM for TSA was obtained. The limit of detection (LOD) for ACP and TSA were 4.71 μM and 4.35 μM, respectively. Finally, this method was successfully employed for the determination of ACP and TSA in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. P. Abbott, D. Boothby, G. Capper, et al., J. Am. Chem. Soc., 126(29), 9142 – 9147 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. D. Carriazo, M. C. Serrano, M. C. Gutierrez, et al., Chem. Soc. Rev., 41, 4996 – 5014 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Y. H. Choi, J. Van Spronsen, Y. Dai, et al., Plant Physiol., 156, 1701 – 1705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Paiva, R. Craveiro, I. Aroso, et al., ACS Sustain. Chem. Eng., 2(5), 1063 – 1071 (2014).

    Article  CAS  Google Scholar 

  5. E. L. Smith, A. P. Abbott, and K. S. Ryder, Chem. Rev., 114(21), 11060 – 11082 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. C. G. Gonzalez, N. R. Mustafa, E. G. Wilson, et al., Flavour Fragr. J., 33(1), 91 – 96 (2018).

    CAS  Google Scholar 

  7. L. G. Shaidarova, I. A. Chelnokova, G. F. Makhmutova, et al., Pharm. Chem. J., 48(8), 537 – 542 (2014).

    Article  CAS  Google Scholar 

  8. M. Hadi and H. Mostaanzadeh, Russ. J. Electrochem., 54(12), 1045 – 1052 (2018).

    Article  CAS  Google Scholar 

  9. B. D. Clayton and Y. N. Stock, Basic Pharmacology for Nurses, Mosby Inc., Harcourt Health Sciences Company, St. Louis (2001).

    Google Scholar 

  10. G. Burgot, F. Auffret, and J. L. Burgot, Anal. Chim. Acta, 343(1 – 2), 125 – 128 (1997).

    Article  CAS  Google Scholar 

  11. S. A. Mohamed and T. Elsaman, Pharm. Chem. J., 54(12), 1306 – 1310 (2021).

    Article  Google Scholar 

  12. J. A. M. Pulgarnn, and L. F. G. Bermejo, Anal. Chim. Act, 333(1 – 2) 59 – 69 (1996).

    Article  Google Scholar 

  13. D. Easwaramoorthy, Y. C. Yu, and H. J. Huang, Anal. Chim. Acta, 439(1), 95 – 100 (2001).

    Article  CAS  Google Scholar 

  14. S. Ravisankar, M. Vasudevan, and M. Gandhimathi, Talanta, 46(6) 1577 – 1581 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. A. Kunkel, S. Günter, and H. Wätzig, Electrophoresis, 8(10), 1882 – 1889 (1997).

    Article  Google Scholar 

  16. P. M. Castellano, S. E. Vignaduzzo, and R. M. Maggio, Anal. Bioanal. Chem., 382(7), 1711 – 1714 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. M. S. M. Quintino, K. Araki, H. E. Toma, et al., Electroanalysis, 14(23), 1629 – 1634 (2002).

    Article  CAS  Google Scholar 

  18. H. H. Maurer, Anal. Bioanal. Chem., 388(7), 1315 – 1325 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. R. Kachoosangi, G. Wildgoose, and R. Compton, Anal. Chim. Acta, 618(1), 54 – 60 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. S. A. Kumar, C. F. Tang, and S. M. Chen, Talanta, 76(5), 997 – 1005 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. S. Shahrokhian and E. Asadian, Electrochim. Acta, 55(3), 666 – 672 (2010).

    Article  CAS  Google Scholar 

  22. S. Mehretie, S. Admassie, M. Tessema, et al., Anal. Bioanal. Electrochem., 3(1), 38 – 50 (2011).

    Google Scholar 

  23. M. Amare and W. Teklay, Cogent Chem., 5(1), 1 – 10 (2019).

    Article  Google Scholar 

  24. Y. Wei, A. Wang, and Y. Liu, Rus. J. Electrochem., 54(12) 1141 – 1147 (2018).

    Article  CAS  Google Scholar 

  25. J. McCaffrey, W. Henderson, B. K. Nicholson, et al., J. Chem. Soc. Dalton Trans., 36, 2577 – 2586 (1997).

    Article  Google Scholar 

  26. M. J. Gismera, J. R. Procopio, M. T. Sevilla, et al., Electroanalysis, 15(2), 126 – 132 (2003).

    Article  CAS  Google Scholar 

  27. A. K. Chhakkar and L. R. Kakkar, Fresenius J. Anal. Chem., 347(12), 483 – 485 (1993).

    Article  CAS  Google Scholar 

  28. D. Shander, G. Ahluwalia, and D. Grosso, Method of Reducing Hair Growth Employing Sulfhydryl Active Compounds, US Patent 5,411,991 A (1992).

  29. M. Aydin, N. Arsu, and Y. Yagci, Macromol. Rapid Commun., 24(12), 718 – 723 (2003).

    Article  CAS  Google Scholar 

  30. H. Jacobelli, 3- or 4-Monosubstituted Phenol and Thiophenol Derivatives Useful as H3 Ligands, US Patent 20,050,267,095A1 (2005).

  31. J. H. Wiener, Y. Kloog, V. Wacheck, et al., J. Invest. Dermat., 120(1), 109 – 115 (2003).

    Google Scholar 

  32. G. Elad, A. Paz, R. Haklai, et al., J. Biochem. Biophys. Acta, 1452(3), 228 – 242 (1999).

    Article  CAS  Google Scholar 

  33. B. D. Clayton, Y. N. Stock, Basic Pharmacology for Nurses, Mosby Inc., Harcourt Health Sciences Company, St. Louis (2001).

    Google Scholar 

  34. J. L. N. de Aguiar, K. C. Leandro, S. M. P. Abrantes, et al., Braz. J. Pharm. Sci., 45(4), 723 – 727 (2009).

    Article  Google Scholar 

  35. A. R. Medina, M. L. F. de Cordoba, and A. M. Dínaz, Fresenius J. Anal. Chem., 365(7), 619 – 624 (1996).

    Article  Google Scholar 

  36. A. V. Pereira, C. Aniceto, and O. Fatibello-Filho, Analyst, 123(5), 1011 – 1015 (1998).

    Article  CAS  Google Scholar 

  37. N. P. Shetti, D. S. Nayak, G. T. Kuchinad, et al., Electrochim. Acta, 269, 204 – 211 (2018).

    Article  CAS  Google Scholar 

  38. A. A. J. Torriero, J. M. Luco, L. Sereno, et al., Talanta, 62(2), 247 – 254 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Y. Dai, J. van Spronsen, G.-J.Witkamp, et al., Anal. Chim. Acta, 766, 61 – 68 (2013).

  40. J. Irudayaraj, and J. Tewari, J. Appl. Spectrosc., 57(12), 1599 – 1604 (2003).

    Article  CAS  Google Scholar 

  41. H. Wang, Y. Jia, X. Wang, et al., J. Chil. Chem. Soc., 57(3), 1208 – 1212 (2012).

    Article  CAS  Google Scholar 

  42. V. M. Parikh, Absorption Spectroscopy of Organic Molecules, Addison Wesley Publishing Company (1974).

  43. Y. Li and S.-M. Chen, Int. J. Electrochem. Sci., 7(3), 2175 – 2187 (2012).

    Article  CAS  Google Scholar 

  44. A. R. Kulkarni, N. P. Shetti, S. J. Malode, et al., Materials Today: Proceedings, 18(3), 723 – 730 (2019).

    CAS  Google Scholar 

  45. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York (2001).

    Google Scholar 

  46. R. S. Nicholson and I. Shain, Anal. Chem., 36(4), 706 – 723 (1964).

    Article  CAS  Google Scholar 

  47. H. Nah, J. Yim, S.-G. Lee, et al., Ann. Lab. Med., 36(2), 188 – 190 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. A. Yiðit, Y. Yardým, and Z. Þentürk, J. Anal. Chem., 75(5), 653 – 661 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Zarei.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, E., Vafadar, M. & Asghari, A. Acetaminophen and Thiosalicylic Acid Sensor Based on Carbon Paste Electrode Modified with Multi-Walled Carbon Nanotubes and Natural Deep Eutectic Solvent. Pharm Chem J 57, 1862–1871 (2024). https://doi.org/10.1007/s11094-024-03090-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-024-03090-5

Keywords

Navigation