Skip to main content
Log in

Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

EIS was utilized as a novel approach to study the role of mechanical and electrochemical processes in flow accelerated pitting corrosion behaviour of AA5083-H321 aluminum–magnesium alloy in 3.5% NaCl solution. This alloy is a suitable material for manufacturing of high speed boats, submarines, desalination systems etc. Impedance spectra were obtained during 24 h of exposure of the samples to the test solution at different rotation speeds. The surface and cross section of the samples were studied by scanning electron microscopy (SEM) and EDAX analysis. The results indicated that increasing the rotation speed causes the depth of pits to increase. By further increasing the rotation speed to 5 and 7 m s−1, the flow condition causes the passive layer inside the pits to breakdown. Simultaneously, the thickness of the passive layer on the areas other than the pits becomes thinner. Shear stresses at 10 m s−1 are so severe that the passive layer on the entire surface breaks down and leads to micropitting corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chester HH (1985) Mar Technol 22:155

    Google Scholar 

  2. Brown S (1994) Feasibility of replacing structural steel with aluminum alloy s in shipbuilding industry. Report Published by University of Viscontin at Madison

  3. Davis JR (1999) Corrosion of aluminum and aluminum alloys. ASM International, Materials Park, OH

    Google Scholar 

  4. Bethencourt M, Botana FJ (1998) Mater Sci Forum 289–292:567

    Article  Google Scholar 

  5. Barbucci A, Bruzzone G (2000) Intermetallics 8:305

    Article  CAS  Google Scholar 

  6. Birbilis N, Buchheit RG (2005) J Electrochem Soc 152:140

    Article  Google Scholar 

  7. Nisancioglu K (2004) Corrosion and protection of aluminum alloys in seawater, Eurocorr 2004

  8. Ghering GA, Peterson MH (1981) Corrosion 37:232

    Google Scholar 

  9. Davis JA, Ghering GA (1975) Mater Perform 4:87

    Google Scholar 

  10. Jafarzadeh K, Shahrabi T, Hosseini MG et al (2007) J Mater Sci Technol 23:623

    CAS  Google Scholar 

  11. Mansfeld F (1990) Electrochim Acta 35:1533

    Article  CAS  Google Scholar 

  12. Macdonald DD (2006) Electrochim Acta 51:1376

    Article  CAS  Google Scholar 

  13. Silverman DC, Carrico JE (1988) Corrosion 44:280

    CAS  Google Scholar 

  14. Aballe A, Bethencourt M, Botana FJ (2001) Mater Corros 53:185

    Article  Google Scholar 

  15. SSPC Standards, systems and specifications (1995) Edited by Janes Rex 112

  16. De Wit JH, Lenderink HJW (1996) Electrochim Acta 41:1111

    Article  Google Scholar 

  17. Smialowska ZS (1999) Corros Sci 41:1743

    Article  Google Scholar 

  18. Aballe A, Bethencourt M, Botana FJ et al (2001) Corros Sci 43:1657

    Article  CAS  Google Scholar 

  19. Aballe A, Bethencourt M, Botana FJ et al (2003) Corros Sci 45:161

    Article  Google Scholar 

  20. Frers SE, Stefenel MM, Mayer C et al (1990) J Appl Electrochem 20:996

    Article  CAS  Google Scholar 

  21. Jafarzadeh K, Shahrabi T, Hosseini MG et al (2008) J Mater Sci Technol 24:215

    CAS  Google Scholar 

  22. http://www.electronics-tutorials.com/basics/Inductance (2007)

  23. Juttner K (1990) Electrochim Acta 35:1501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shahrabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarzadeh, K., Shahrabi, T. & Oskouei, A.A. Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution. J Appl Electrochem 39, 1725–1731 (2009). https://doi.org/10.1007/s10800-009-9867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9867-5

Keywords

Navigation