Skip to main content
Log in

Electrodeposition of nickel oxide nanoparticles on glassy carbon surfaces: application to the direct electron transfer of tyrosinase

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work describes the performance of a tyrosinase/nickel oxide nanoparticles/glassy carbon (Tyr/NiO NPs/GC) electrode. This electrode was prepared by first applying a NiO NPs electrochemical deposition onto the GC electrode surface and then tyrosinase immobilization was applied to the surface of electrodeposited NiO NPs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures demonstrated the existence of different NiO NP geometrical structures. These geometrical structures could lead to better immobilization of proteins on their surfaces. The copper containing enzyme tyrosinase successfully achieved electrical contact with the electrode because of the unique structural alignment of tyrosinase enzyme on the nanometer-scale nickel oxide surfaces. This method could be suitable for application to nanofabricated devices facilitating better performance. It was concluded that tyrosinase can be effectively applied to nanometer-scale nickel oxide surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daniel M-C, Astruc D (2004) Chem Rev 104:293

    Article  Google Scholar 

  2. Wanekaya AK, Chen W, Myung NV, Mulchandai A (2006) Electroanalysis 18:533

    Article  Google Scholar 

  3. Niemeyer CM (2001) Angew Chem Int Ed 40:4128

    Article  Google Scholar 

  4. Katz E, Willner I (2004) Angew Chem Int Ed 43:6042

    Article  Google Scholar 

  5. Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) Angew Chem Int Ed 45:1572

    Article  Google Scholar 

  6. Willner I, Baron R, Willner B (2006) Adv Mater 18:1109

    Article  Google Scholar 

  7. Hallet B, Sherratt DJ (1997) FEMS Microbiol Rev 21:157

    Article  CAS  Google Scholar 

  8. Wu L-Q, Payne GF (2004) Trends Biotechnol 22:593

    Article  Google Scholar 

  9. Xu Y, Stokes AH, Freeman WM, Kumer SC, Vogt BA, Vrana KE (1997) Mol Brain Res 45:159

    Article  CAS  Google Scholar 

  10. Kounalakis N, Goydos JS (2005) Curr Oncol Rep 7:377

    Article  Google Scholar 

  11. Yaropolov AI, Kharybin AN, Emneus J, Marko-Varga G, Gorton L (1996) Bioelectrochem Bioenerg 40:49

    Article  Google Scholar 

  12. Ye B, Zhou X (1997) Talanta 44:831

    Article  Google Scholar 

  13. Dempsey E, Diamond D, Collier A (2004) Biosens Bioelectron 20:367

    Article  Google Scholar 

  14. Sanz VC, Mena ML, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2005) Anal Chim Acta 528:1

    Article  Google Scholar 

  15. Wang J, Lu F, Lopez D (1994) Analyst 119:455

    Article  CAS  Google Scholar 

  16. Campuzano S, Serra B, Pedrero M, Villena FJM, Pingarron JM (2003) Anal Chim Acta 494:187

    Article  Google Scholar 

  17. Zhou YL, Tian RH, Zhi JF (2007) Biosens Bioelectron 22:822

    Article  Google Scholar 

  18. Liu Z, Liu Y, Yang H, Yang Y, Shen G, Yu R (2005) Anal Chim Acta 533:3

    Article  Google Scholar 

  19. Li Y-F, Liu Z-M, Liu Y-L, Yang Y-H, Shen G-L, Yu R-Q (2006) Anal Biochem 349:33

    Article  Google Scholar 

  20. Liu S, Yu J, Ju H (2003) J Electroanal Chem 540:61

    Article  Google Scholar 

  21. Rogers KR, Becker JY, Cembrano J (2000) Electrochim Acta 45:4373

    Article  Google Scholar 

  22. Burestedt E, Narvaez A, Ruzgas T, Gorton L, Emneus J, Dominguez E, Marko-Varga G (1996) Anal Chem 68:1605

    Article  Google Scholar 

  23. Daigle F, Leech D (1997) Anal Chem 69:4108

    Article  Google Scholar 

  24. Coche-Guerente L, Desprez V, Labbe P (1999) J Electroanal Chem 470:61

    Article  Google Scholar 

  25. Forzani ES, Rivas GA, Solis VM (1999) J Electroanal Chem 461:174

    Article  Google Scholar 

  26. Conway BE, Sattar MA (1968) J Electroanal Chem 19:351

    Article  CAS  Google Scholar 

  27. Fleischmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 31:39

    Article  CAS  Google Scholar 

  28. Cowan RL, Staehle RW (1971) J Electrochem Soc 118:557

    Article  CAS  Google Scholar 

  29. Giovanelli D, Lawrence NS, Jiang L, Jones TGJ, Compton RG (2003) Analyst 128:173

    Article  Google Scholar 

  30. Wong JL, Tian M, Jin WR, He YN (2001) Electroanalysis 12:1355

    Article  Google Scholar 

  31. Giovanelli D, Lawrence NS, Wilkins SJ, Jiang L, Jones TGJ, Compton RG (2003) Talanta 61:211

    Article  Google Scholar 

  32. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2006) Electrochem Commun 8:1499

    Article  Google Scholar 

  33. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Biophys Chem 125:540

    Article  Google Scholar 

  34. Bayandori Moghaddam A, Ganjali MR, Dinarvand R, Razavi T, Saboury AA, Moosavi-Movahedi AA, Norouzi P (2008) J Electroanal Chem 614:83

    Article  Google Scholar 

  35. Bayandori Moghaddam A, Ganjali MR, Dinarvand R, Saboury AA, Razavi T, Moosavi-Movahedi AA, Norouzi P (2007) Biophys Chem 129:259

    Article  Google Scholar 

  36. Mu C, Zhao Q, Xu D, Zhuang Q, Shao Y (2007) J Phys Chem B 111:1491

    Article  Google Scholar 

  37. Bayandori Moghaddam A, Kobarfard F, Fakhari AR, Nematollahi D, Hosseiny Davarani SS (2005) Electrochim Acta 51:739

    Article  Google Scholar 

  38. Bayandori Moghaddam A, Ganjali MR, Dinarvand R, Norouzi P, Saboury AA, Moosavi-Movahedi AA (2007) Biophys Chem 128:30

    Article  Google Scholar 

  39. Bayandori Moghaddam A, Ganjali MR, Norouzi P, Niasari M (2007) J Electroanal Chem 601:205

    Article  Google Scholar 

  40. Ottenbrite RM, Chiellini E (1992) Polymers in medicine: biomedical and pharmaceutical applications. PA, Technomic Publishing, Lancaster

    Google Scholar 

  41. Makino N, McMahill P, Mason HS (1974) J Biol Chem 249:6062

    CAS  Google Scholar 

  42. Ros-Martinez JR, Rodriguez-Lopez JN, Castellanos RV, Carsia Canovas F (1993) Biochem J 294:621

    CAS  Google Scholar 

  43. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  44. Lerch K (1983) Mol Cell Biochem 52:125

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the University of Tehran Research Affairs is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ganjali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayandori Moghaddam, A., Ganjali, M.R., Saboury, A.A. et al. Electrodeposition of nickel oxide nanoparticles on glassy carbon surfaces: application to the direct electron transfer of tyrosinase. J Appl Electrochem 38, 1233–1239 (2008). https://doi.org/10.1007/s10800-008-9541-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9541-3

Keywords

Navigation