Skip to main content
Log in

Optimization of Ti/SnO2–Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The preparation of antimony-doped tin oxide anodes on a titanium substrate (Ti/SnO2–Sb2O5 anodes) by dipping in a solution of tin chloride and antimony chloride and annealing at high temperatures was optimized for the potential applications of drinking water disinfection, wastewater effluent disinfection, and industrial waste stream treatment. The effectiveness of Ti/SnO2–Sb2O5 anodes prepared under different conditions was evaluated by using hexanol as a probe molecule to measure the extent of oxidative reactions, and anode performance was monitored by cyclic voltammetry. A large factorial matrix consisting of tin chloride concentration × antimony chloride concentration × annealing temperature was first evaluated, and the optimum conditions were found to be 20% tin chloride and 1% antimony chloride in the dip solution and an annealing temperature of 500°C. Further investigation showed that the rate of withdrawal from the dip solution, the number of coatings of the dip solution, and the addition of oxygen during annealing did not significantly affect anode performance. Under optimum preparation conditions, Ti/SnO2–Sb2O5 anodes showed no loss of performance over 1,280 cycles of cyclic voltammetry, suggesting that their performance can be sustained over long periods of use. The result of this research is a simple preparation method for effective and long-lived Ti/SnO2–Sb2O5 anodes; this method could be easily adopted by a utility for pilot- or full-scale disinfection of water and wastewater and the treatment of industrial waste streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lane S, Lloyd D (2002) Crit Rev Microbiol 28:123

    Article  Google Scholar 

  2. Boorman G, Dellarco V, Dunnick JK, Chapin RE, Hunter S, Hauchman F, Gardner H, Cox M, Sills RC (1999) Environ Health Perspect 107:207

    Article  CAS  Google Scholar 

  3. Hwang BF, Jaakkola JJK (2003) Arch Environ Health 58:83

    Article  CAS  Google Scholar 

  4. White GC (1998) Handbook of chlorination and alternative disinfectants, 4th edn. Wiley, New York, pp 1592

    Google Scholar 

  5. Masschelein WJ, Rice RG (2002) Ultraviolet light in water and wastewater sanitation. CRC, Boca Raton, pp 192

    Google Scholar 

  6. Patermarakis G, Fountoukidis E (1990) Water Res 24:1491

    Article  CAS  Google Scholar 

  7. Matsunaga T, Nakasono S, Takamuku T, Burgess JG, Nakamura N, Sode K (1992) Appl Environ Microbiol 58:686

    CAS  Google Scholar 

  8. Sadamura H, Kobayashi S, Honda S, Suzuki N, Kogure M, Hamashima H, Kanzaki Y (2000) Electrochem 68:321

    CAS  Google Scholar 

  9. Okochi M, Matsunaga T (1997) Electrochim Acta 42:3247

    Article  CAS  Google Scholar 

  10. Matsunaga T, Okochi M, Takahashi M, Nakayama T, Wake H, Nakamura N (2000) Water Res 34:3117

    Article  CAS  Google Scholar 

  11. Drees KP, Abbaszadegan M, Maier RM (2003) Water Res 37:2291

    Article  CAS  Google Scholar 

  12. Kerwick MI, Reddy SM, Chamberlain AHL, Holt DM (2005) Electrochim Acta 50:5270

    Article  CAS  Google Scholar 

  13. Li XY, Ding F, Lo PSY, Sin SHP (2002) J Environ Eng 128:697

    Article  CAS  Google Scholar 

  14. Feng CP, Suzuki K, Zhao SY, Sugiura N, Shimada S, Maekawa T (2004) Bioresource Technol 94:21

    Article  CAS  Google Scholar 

  15. Bergmann H, Koparal S (2005) Electrochim Acta 50:5218

    Article  CAS  Google Scholar 

  16. Liang WY, Qu JH, Chen LB, Liu HJ, Lei PJ (2005) Environ Sci Technol 39:4633

    Article  CAS  Google Scholar 

  17. Furuta T, Tanaka H, Nishiki Y, Pupunat L, Haenni W, Rychen P (2004) Diamond Relat Mater 13:2016

    Article  CAS  Google Scholar 

  18. Troster I, Schafer L, Fryda M, Matthee T (2004) Water Sci Technol 49:207

    CAS  Google Scholar 

  19. Li XY, Diao HF, Fan FXJ, Gu JD, Ding F, Tong ASF (2004) J Environ Eng 130:1217

    Article  CAS  Google Scholar 

  20. Jeong J, Kim JY, Yoon J (2006) Environ Sci Technol 40:6117

    Article  CAS  Google Scholar 

  21. Comninellis C (1994) Electrochim Acta 39:1857

    Article  CAS  Google Scholar 

  22. Comninellis C, DeBattisti A (1996) J Chim Phys PCB 93:673

    CAS  Google Scholar 

  23. Loge FJ, Inouye T, Watts RJ (2006) Water Environ Res 78:41

    Article  CAS  Google Scholar 

  24. Stucki S, Kotz R, Carcer B, Suter W J (1991) App Electrochem 21:99

    Article  CAS  Google Scholar 

  25. Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Environ Sci Technol 32:3570

    Article  CAS  Google Scholar 

  26. Kotz R, Stucki S, Carcer B (1991) J Appl Electrochem 21:14

    Article  Google Scholar 

  27. Comninellis C, Nerini A (1995) J Appl Electrochem 25:23

    Article  CAS  Google Scholar 

  28. Li XY, Cui YH, Feng YJ, Xie ZM, Gu JD (2005) Water Res 39:1972

    Article  CAS  Google Scholar 

  29. Borras C, Berzoy C, Mostany J, Scharifker B (2006) J Appl Electrochem 36:433

    Article  CAS  Google Scholar 

  30. Quiroz M, Reyna S, Sanchez J (2003) J Solid State Electrochem 7:277

    CAS  Google Scholar 

  31. Tanaka S, Nakata Y, Kimura T, Yustiawati M, Kawasaki M, Kuramitz H (2002) J Appl Electrochem 32:197

    Article  CAS  Google Scholar 

  32. Li YJ, Wang F, Zhou GD, Ni YM (2003) Chemosphere 53:1229

    Article  CAS  Google Scholar 

  33. Waterston K, Wang JWJ, Bejan D, Bunce NJ (2006) J Appl Electrochem 36:227

    Article  CAS  Google Scholar 

  34. Stucki S, Kotz R, Carcer B, Suter W (1991) J Appl Electrochem 21:99

    Article  CAS  Google Scholar 

  35. Correa-Lozano B, Comninellis C, DeBattisti A (1996) J Appl Electrochem 26:683

    CAS  Google Scholar 

  36. Grimm JH, Bessarabov DG, Simon U, Sanderson RD (2000) J Appl Electrochem 30:293

    Article  CAS  Google Scholar 

  37. Duverneuil P, Maury F, Pebere N, Senocq F, Vergnes H (2002) Surf Coat Technol 151:9

    Article  Google Scholar 

  38. Lipp L, Pletcher D (1997) Electrochim Acta 42:1091

    Article  CAS  Google Scholar 

  39. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513

    CAS  Google Scholar 

  40. Watts RJ, Sarasa J, Loge FJ, Teel AL (2005) J Environ Eng 131:158

    Article  CAS  Google Scholar 

  41. Correa-Lozano B, Comninellis C, DeBattisti A (1997) J Appl Electrochem 27:970

    Article  CAS  Google Scholar 

  42. Kotz R, Stucki S, Carcer B (1991) J Appl Electrochem 21:14

    Article  Google Scholar 

  43. Montilla F, Morallon E, Vazquez JL (2005) J Electrochem Soc 152:B421

    Article  CAS  Google Scholar 

  44. Chen XM, Gao FR, Chen GH (2005) J Appl Electrochem 35:185

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Grant No. 02-CTS-6 from the Water Environment Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Watts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, R.J., Wyeth, M.S., Finn, D.D. et al. Optimization of Ti/SnO2–Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J Appl Electrochem 38, 31–37 (2008). https://doi.org/10.1007/s10800-007-9391-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9391-4

Keywords

Navigation