Skip to main content
Log in

Electrochemical incineration of oxalic acid: Reactivity and engineering parameters

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mass transfer measurements were carried out to test a disk-shaped parallel-plate electrochemical cell, based on a new design. The impinging-jet-cell concept, confined between parallel plates, was adapted to a configuration with one central inlet and several peripheral exit sections, leading to more effective hydrodynamics within the cell. Measurements of mass transfer coefficient were performed using the limiting diffusion current technique based on ferro-cyanide ion oxidation, and overall mass transfer coefficients were correlated to Reynolds numbers ranging from 30 to 200.

 A comparison with literature on similar devices showed higher mass transfer coefficients can be obtained in the cell described in the present work. From the mass transfer standpoint, this type of cell could be a valuable tool in electrochemical wastewater treatment applications.

 The electrochemical oxidation of oxalic acid was tested at different anode materials (Pb/PbO2, boron-doped diamond, Ti/Pt and Ti/IrO2–Ta2O5), showing that the new cell design enables limitations usually encountered with conventional batch cells to be overcome. However, the nature of the anode material remains an important parameter for the elimination of organic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

electrode surface area (m2)

C :

bulk species concentration (mol m−3)

D :

diffusion coefficient (m2 s−1)

d N :

diameter of the nozzle (m)

F :

faradic constant (96487 C mol−1)

H :

nozzle height (m)

I L :

electrolysis limiting current (A)

K :

mass transfer coefficient (m s−1)

r :

radial coordinate measured from the stagnation point (m)

R :

radius of the disk electrode (cm)

Re :

Reynolds number

Re d :

nozzle Reynolds number

Re r :

radial Reynolds number

s :

inter-electrode distance (m)

Sc :

Schmidt number

Sh :

Sherwood number

Sh d :

nozzle Sherwood number

Sh r :

radial Sherwood number

z :

electrons exchanged in electrode reaction

V N :

mean fluid velocity in cell or channel (m s−1)

Q :

volumetric flow rate (m3 s−1)

ρ:

fluid density (kg m−3)

ν:

kinematics viscosity of the fluid (m2 s−1)

μ:

dynamic viscosity (kg s−1 m−1)

References

  1. Oduoza C.F., and Wragg A.A. (2000) J. Appl. Electrochem. 30: 1439

    Article  CAS  Google Scholar 

  2. W.N. Taama, R.E. Plimley and K. Scott, ‘Mass transfer rates in a DEM electrochemical cell’, proceedings of the 4th European Symposium on Electrochemical Engineering (CHISA), Institute of Chemical Technology, Prague (1996) pp. 289–295

  3. Goodridge F., Mamoor G.M., Plimley R.E. (1985) IChemE Symp. Ser. 98: 61

    Google Scholar 

  4. Wragg A.A., Leontaritis A., (1997) Chem. Eng. J. 66: 1

    Article  CAS  Google Scholar 

  5. Wragg A.A., Tagg D.J., Patrick M.A., (1980) J. Appl. Electrochem. 10: 43

    Article  CAS  Google Scholar 

  6. Bengoa C., Montillet A., Legentilhomme P., Legrand J., (1997) J. Appl. Electrochem. 27: 1313

    Article  CAS  Google Scholar 

  7. Oduoza C.F., Wragg A.A. (2002) Chem. Eng. J. 85: 119

    Article  CAS  Google Scholar 

  8. Mustoe L.H., Wragg A.A., (1981) J. Chem Tech. Biotechnol 31: 317

    Article  CAS  Google Scholar 

  9. Mustoe L.H., Wragg A.A., (1983) J. Appl. Electrochem. 13: 507

    Article  CAS  Google Scholar 

  10. Djati A., Brahimi M., Legrand J., Saidani B., (2001) J. Appl. Electrochem. 31: 833

    Article  CAS  Google Scholar 

  11. Oduoza C.F., Wragg A.A., (1997) Chem. Eng. J. 68: 145

    Article  CAS  Google Scholar 

  12. 12. Wragg A.A., Leontaritis A., (1991) in Electrochemical Cell Design and Optimization. Dechema Monographs 123: 345

    CAS  Google Scholar 

  13. Polcaro A.M., Vacca A., Palmas S. Mascia M., (2003) J. Appl. Electrochem. 33: 885

    Article  CAS  Google Scholar 

  14. Jüttner K., Galla U., Schmieder H., (2000) Electrochim. Acta. 45: 2575

    Article  Google Scholar 

  15. Yapici S., Kuslu S., Ozmetin C., Ersahan H., Pekdemir T., (1999) J. Appl. Electrochem., 29: 185

    Article  CAS  Google Scholar 

  16. Chin D.-T., Tsang C.-H., (1978) J. Electrochem. Soc. 125: 1461

    Article  CAS  Google Scholar 

  17. H. Martin, in J.P. Hartnett and T.F. Irvine, Jr. (Eds), `Advances in Heat Transfer', Vol. 13, (Academic Press, New York, 1977), pp. 1–60

  18. 18. Incropera F.P., de Witt D.P., (1990) Fundamentals of Heat and Mass Transfer. 3rd ed., John Wiley & Sons, New York, pp. 431

    Google Scholar 

  19. Gandini D., Mahè E., Michaud P.A., Haenni W., Perret A., Comninellis Ch., (2000) J. Appl. Electrochem. 30: 1345

    Article  CAS  Google Scholar 

  20. Comninellis Ch., Plattner E., (1988) Chimia 42: 250

    CAS  Google Scholar 

  21. Comninellis Ch., Pulgarin C., (1991) J. Appl. Electrochem. 21: 703

    Article  CAS  Google Scholar 

  22. Comninellis Ch., (1992) Gas Wasser, Abwasser. 11: 792

    Google Scholar 

  23. Comninellis Ch., Pulgarin C., (1993) J. Appl. Electrochem. 23: 108

    Article  CAS  Google Scholar 

  24. Comninellis Ch., Plattner E., Seignez C., Pulgarin C., Péringer P., (1992) Swiss Chem 14: 25

    Google Scholar 

  25. Pulgarin C., Alder N., Péringer P., Comninellis Ch., (1994) Water Res. 28: 887

    Article  CAS  Google Scholar 

  26. Polcaro A.M., Mascia M., Palmas S., Vacca A., (2002) Ind. Eng. Chem Res. 41: 2874

    Article  CAS  Google Scholar 

  27. Ch. Comninellis, (1994) Electrochim. Acta. 39: 1857

    Article  Google Scholar 

  28. Polcaro A.M., Palmas S., Renoldi F., Mascia M., (1999) J. Appl. Electrochem. 29: 147

    Article  CAS  Google Scholar 

  29. Belhadj Tahar N., Savall A., (1998) J. Electrochem. Soc. 145: 3427

    Article  Google Scholar 

  30. Feng J., Houk L.L., Johnson D.C., Lowery S.N., Carey J.J., (1995) J. Electrochem. Soc. 142: 3626

    Article  CAS  Google Scholar 

  31. Bonfatti F., Ferro S., Lavezzo F., Malacarne M., Lodi G., De Battisti A., (1999) J. Electrochem. Soc., 146: 2175

    Article  CAS  Google Scholar 

  32. Foty G., Gandini D., Comninellis Ch., (1997) Current Topics in Electrochemistry 5 : 71

    Google Scholar 

  33. Comninellis Ch., De Battisti A., (1996) J. Chim. Phys. 93: 673

    CAS  Google Scholar 

  34. Fisher V., Gandini D., Laufer S., Blank E., Comninellis Ch., (1998) Electrochim. Acta. 44: 521

    Article  CAS  Google Scholar 

  35. Fryda M., Herrmann D., Schafer L., Klages C.-P., Perrer A., Haenni W., Comninellis Ch., Gandini D., (1999) New Diamond and Frontier Carbon Technol. 9: 229

    CAS  Google Scholar 

  36. Tagg D.J., Patrick M.A., Wragg A.A., (1979) Trans. I. Chem. Eng. 57: 176

    CAS  Google Scholar 

  37. Chen Y.M., Lee W.T., Wu S.J., (1998) Heat Mass Transfer 34: 195

    Article  CAS  Google Scholar 

  38. Chia C.J., Giralt F., Trass O., (1977) Ind. Eng. Chem. Fundam. 16: 28

    Article  CAS  Google Scholar 

  39. Giralt F., Trass O., (1975) Can. J. Chem. Eng. 53: 505

    Article  CAS  Google Scholar 

  40. Scholtz M.T., Trass O., (1970) AIChE J. 16: 82

    Article  Google Scholar 

  41. W. Fresenius, Water Analysis. Ed. Springer-Verlag, Berlin Heidelberg Germany, (1998) p. 477

  42. Ferro S., (2002) J. Mater. Chem., 12: 2843

    Article  CAS  Google Scholar 

  43. Perret A., Skinner N., Comninellis Ch., Gandini D., (1997) Electrochem. Soc. Proc. 32: 275

    Google Scholar 

  44. Michaud P.A., PhD Thesis No. 2595 (2002) EPFL-Switzerland

  45. Zin G.K., U.S Patent 3,196,832 (1965)

  46. Martinez-Huitle C.A., Ferro S., De Battisti A., (2004) Electrochim. Acta 49: 4027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.A. Martinez-Huitle gratefully acknowledges the CONACYT for financial support of his Ph.D. The authors thank Adamant Technologies (Neuchâtel, Switzerland), for providing the BDD samples, and De Nora (Milan, Italy) for the Ti/Pt and Ti/IrO2–Ta2O5 electrodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. DE BATTISTI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MARTÍNEZ-HUITLE, C., FERRO, S. & DE BATTISTI, A. Electrochemical incineration of oxalic acid: Reactivity and engineering parameters. J Appl Electrochem 35, 1087–1093 (2005). https://doi.org/10.1007/s10800-005-9003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9003-0

Key words:

Navigation