Skip to main content
Log in

Selective detection of dopamine using a functionalised polyaniline composite electrode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The behaviour of a poly (aniline boronic acid) (PABA) modified glassy carbon electrode (GCE) for the detection of dopamine (DA) in the presence of excess of ascorbic acid (AA) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques is investigated. On bare GCE, both DA and AA are oxidized at ~0.16 V, whereas on PABA modified GCE they are oxidized at 0.2 and 0.054 V, respectively. Though PABA favours DA oxidation through ester formation with boronic acid motif, the AA oxidation is also promoted by polyaniline backbone through the involvement of AA in the redox of polyaniline. Since both DA and AA undergo oxidation at closely spaced potentials at a PABA electrode, Nafion®-incorporation into the PABA film was examined for selective determination of DA in the presence of AA. The selectivity was due to accumulation of DA on the electrode surface through ester formation with the boronic acid group and suppression of AA oxidative current through charge discrimination by Nafion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Venton R.M. Wightman (2003) Anal. Chem. 75 414A

    Google Scholar 

  2. D.W.M. Arrigan (1997) Anal. Commun. 34 241

    Google Scholar 

  3. R.M. Wightman C. Amatore R.C. Engstrom P.D. Hale E.W. Kristensen W.G. Kuhr L.J. May (1998) Neuroscience. 25 513

    Google Scholar 

  4. C. Martin (1998) Chem. Br. 34 40

    Google Scholar 

  5. M. Pufulete (1997) Chem. Br. 33 31

    Google Scholar 

  6. A.G. Ewing M.A. Dayton R.M. Wightman (1981) Anal. Chem. 53 1842

    Google Scholar 

  7. M.A. Dayton A.G. Ewing R.M. Wightman (1980) Anal. Chem. 52 2392

    Google Scholar 

  8. T. Zetterstrom T. Sharp C.A. Massden U. Ungerstedt (1983) J. Neurochem. 41 1769

    Google Scholar 

  9. Z. Gao H. Huang (1998) Chem. Commun. No. 19 2107

    Google Scholar 

  10. B.D. Bath D.J. Michael B.J. Trafton J.D. Joseph P.L. Runnels R.M. Wightman (1997) Anal. Chem. 69 5087

    Google Scholar 

  11. J.-M. Zen P.-J. Chen (1997) Anal. Chem. 69 5087

    Google Scholar 

  12. P. Ramesh G.S. Suresh S. Sampath (2004) J. Electroanal. Chem. 561 173

    Google Scholar 

  13. T. Selvaraju R. Ramaraj (2003) J. Appl. Electrochem. 33 759

    Google Scholar 

  14. C. Retnaraj T. Okajima T. Ohsaka (2004) J. Electroanal. Chem. 543 127

    Google Scholar 

  15. D.C. Trivedi In H.S. Nalwa (Ed.), ‘Handbook of Organic Conductive Molecules and Polymers’, Vol. 2 (John Wiley & Sons, 1997).

  16. Z. Mandic L. Dvic (1996) J. Electroanal. Chem. 403 133

    Google Scholar 

  17. K. Rajendra Prasad N. Munichandraiah (2003) Anal. Chem. 74 5531

    Google Scholar 

  18. T.D. James K.R.A.S. Sandanayake S. Shinkai (1996) Angew. Chem. Int. Ed. Engl. 35 1910

    Google Scholar 

  19. W. Wang X. Gao B. Wang (2002) Curr. Org. Chem. 6 1285

    Google Scholar 

  20. G. Springsteen B. Wang (2002) Tetrahedron. 58 5291

    Google Scholar 

  21. S.M. Strawbridge S.J. Green J.H.R. Tucker (2000) Chem. Commun. No. 22 2393

    Google Scholar 

  22. E. Shoji M.S. Freund (2002) J. Am. Chem. Soc. 124 12486

    Google Scholar 

  23. M. Nicolas B. Fabre G. Marchand J. Simonet (2000) Eur. J. Org. Chem. 9 1703

    Google Scholar 

  24. Y. Cao S. Li Z. Xue D. Guo (1986) Synth. Met. 16 305

    Google Scholar 

  25. M.J. Giz B. Duong N.J. Tao (1999) J. Electroanal. Chem. 465 72

    Google Scholar 

  26. D.-M. Zhou J.-J. Xu H.-Y. Chen H.-Q. Fang (1997) Electroanalysis . 9 1185

    Google Scholar 

  27. I.G. Casella M.R. Guascito (1997) Electroanalysis. 9 1381

    Google Scholar 

  28. D.W.M. Arrigan M. Ghita V. Beni (2004) Chem. Commun. 6 732

    Google Scholar 

  29. R.F. Lane A.T. Hubbard (1976) Anal. Chem. 48 1287

    Google Scholar 

  30. M.N. Szentirmay and C.R. Martin, Anal. Chem. 56 (1984) 1898 G.A. Gerhardt, A. Foke, F. Nagy, B. Moghaddam and Adams R.N., Brain Res. 290 (1984) 390.

  31. A.J. Bard L.R. Faulkner (2001) Electrochemical Methods EditionNumber2 Wiley NewYork 231

    Google Scholar 

  32. P.D. Beatie A. Delay H.H. Girault (1995) J. Electroanal. Chem. 380 167

    Google Scholar 

  33. S. Lin Z. Zhao H. Freiser (1986) J. Electroanal. Chem. 210 137

    Google Scholar 

  34. D. Homolka V. Marecek A. Samec K. Base H. Wendt (1984) J. Electroanal. Chem. 163 159

    Google Scholar 

  35. R.W. Murray (1993) NoChapterTitle A.J. Bard (Eds) Chemically modified electrodes in Electroanalytical Chemistry 13 Marcel Dekker Inc New York

    Google Scholar 

  36. B. Fabre L. Taillebois (2003) Chem. Commun. No. 24 2982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mathiyarasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathiyarasu, J., Senthilkumar, S., Phani, K.L.N. et al. Selective detection of dopamine using a functionalised polyaniline composite electrode. J Appl Electrochem 35, 513–519 (2005). https://doi.org/10.1007/s10800-005-0914-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-0914-6

Key words

Navigation