Skip to main content
Log in

The design of a cloud-based tracker platform based on system-of-systems service architecture

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Devices embedded with position tracking facilities are now widely available, such as smartphones, smartwatches, vehicle location trackers, etc. However, data mining and advanced analytics are rarely bundled with these devices that limits their utility. In this paper, we present the design of a generic, programmable position tracking platform, namely CQtracker. In particular, this platform is incorporated with a cloud-based engine of advanced analytics. CQtracker is constructed based on a concept of system-of-systems service architecture to deliver data-system-as-a-service. It is designed for the consumption by a variety of spatio-temporal applications. Spatio-temporal data exhibit strong heterogeneous patterns, data sparseness and distribution skewness. Hence, they are difficult to analyze. CQtracker reveals relationships and structures from these data by self-regularized time-varying dynamic Bayesian networks. In addition, a Bayesian parameter estimation approach is applied to an epidemic model for outbreak predictions. Sample applications are presented in this paper, in which CQtracker successfully reveals the evolution of time-varying structures from traffic trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://geoserver.org

  2. http://www.opengeospatial.org/

  3. http://www.opengeospatial.org/standards/is

  4. http://web.mit.edu/sysdyn/sd-intro/

  5. https://blog.twitter.com/2014/breakout-detection-in-the-wild

  6. http://www.eclipse.org

  7. http://wso2.com

  8. http://geoserver.org

  9. http://jclouds.apache.org

  10. https://www.cqtracker.com

References

  • Ahmad, Y., Berg, B., Cetintemel, U., Humphrey, M., Hwang, J.H., Jhingran, A., Maskey, A., Papaemmanouil, O., Rasin, A., Tatbul, N., Xing, W., Xing, Y., & Zdonik, S. (2005). Distributed operation in the borealis stream processing engine. In Proceedings of the 2005 ACM SIGMOD international conference on management of data (pp. 882–884). ACM.

  • Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., & Saltz, J. (2013). Hadoop-GIS: a high performance spatial data warehousing system over mapreduce. In Proceedings of the VLDB Endowment, 6(11), 1009–1020.

    Article  Google Scholar 

  • Arya, S., Malamatos, T., & Mount, D.M. (2002). Space-efficient approximate Voronoi diagrams. In Proceedings of the 34 annual ACM symposium on theory of computing (pp. 721–730). ACM.

  • Aurenhammer, F., & Klein, R. (2000). Voronoi diagrams (chap. 5, pp. 201–290). The Netherlands: Elsevier Science.

  • Baker, M., McNicholas, A., Garrett, N., Jones, N., Stewart, J., Koberstein, V., & Lennon, D. (2000). Household crowding a major risk factor for epidemic meningococcal disease in auckland children. The Pediatric Infectious Disease Journal, 19(10), 983–990.

    Article  Google Scholar 

  • Bettencourt, L.M., & Ribeiro, R.M. (2008). Real time bayesian estimation of the epidemic potential of emerging infectious diseases. PLoS One, 3(5), e2185.

    Article  Google Scholar 

  • Borwein, J.M., & Lewis, A.S. (2010). Convex analysis and nonlinear optimization: theory and examples (Vol. 3). Springer.

  • Carlock, P., & Fenton, R. (2001). System-of-systems (SoS) enterprise systems for information-intensive organizations. Journal of Systems Engineering, 4(4), 242–261.

    Article  Google Scholar 

  • Chu, V.W., Wong, R.K., Chen, F., & Chi, C.H. (2014a). Microblog topic contagiousness measurement and emerging outbreak monitoring. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (pp. 1099–1108). ACM.

  • Chu, V.W., Wong, R.K., Liu, W., & Chen, F. (2014b). Causal structure discovery for spatio-temporal data. In Proceedings of the database systems for advanced applications (pp. 236–250). Springer.

  • Chu, V.W., Wong, R.K., Chen, F., Fong, S., & Hung, P.C. (2016). Self-regularized causal structure discovery for trajectory-based networks. Journal of Computer and System Sciences, 82(4), 594 –609.

    Article  Google Scholar 

  • Coelho, F.C., Codeço, C.T., & Gomes, M.G.M. (2011). A Bayesian framework for parameter estimation in dynamical models. PloS One, 6(5), e19,616.

    Article  Google Scholar 

  • Cui, A., Zhang, M., Liu, Y., Ma, S., & Zhang, K. (2012). Discover breaking events with popular hashtags in twitter. In Proceedings of the 21st ACM international conference on information and knowledge management (1794–1798). ACM.

  • Curry, E. (2012). System of systems information interoperability using a linked dataspace. In Proceedings of the IEEE 7th international conference on system of systems engineering (pp. 101–106).

  • Dietz, K. (1967). Epidemics and rumours: a survey. Journal of the Royal Statistical Society Series A (General), 505–528.

  • Dondelinger, F., Lèbre, S, & Husmeier, D. (2013). Non-homogeneous dynamic bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Machine Learning, 90 (2), 191–230.

    Article  Google Scholar 

  • Du Mouza, C., & Rigaux, P. (2004). Multi-scale classification of moving objects trajectories. In Proceedings of conference on scientific and statistical database management (pp. 307–316). Citeseer.

  • Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., & et al. (2004). Least angle regression. The Annals of Statistics, 32(2), 407–499.

    Article  Google Scholar 

  • Eisenberg, J.N., Brookhart, M.A., Rice, G., Brown, M., & Colford, Jr J.M. (2002). Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environmental Health Perspectives, 110(8), 783.

    Article  Google Scholar 

  • Ester, M., peter Kriegel, H., J, S., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise (pp. 226–231). AAAI Press.

  • Fagiolini, E., & Gruber, C. (2012). Entropy-based method for optimal temporal and spatial resolution of gravity field variations . In A. Abbasi, & N. Giesen (Eds.), EGU general assembly conference abstracts, EGU General Assembly Conference Abstracts, (Vol. 14, p. 8916).

  • Ferguson, N.M., Cummings, D.A., Fraser, C., Cajka, J.C., Cooley, P.C., & Burke, D.S. (2006). Strategies for mitigating an influenza pandemic. Nature, 442(7101), 448–452.

    Article  Google Scholar 

  • Fortune S (1986). A sweepline algorithm for Voronoi diagrams, Symposium on computational geometry (pp. 313–322).

    Google Scholar 

  • Fu, W.J. (1998). Penalized regressions: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7(3), 397–416.

    Google Scholar 

  • Fuchs, J.J. (2005). Recovery of exact sparse representations in the presence of bounded noise. IEEE Transactions on Information Theory, 51(10), 3601–3608.

    Article  Google Scholar 

  • Gomez Rodriguez, M., Leskovec, J., & Krause, A. (2010). Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1019–1028). ACM.

  • Goorha, S., & Ungar, L. (2010). Discovery of significant emerging trends. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 57–64). ACM.

  • Grzegorczyk, M., & Husmeier, D. (2009). Non-stationary continuous dynamic Bayesian networks. In Proceedings of the annual conference on neural information processing systems (pp. 682–690).

    Google Scholar 

  • Grzegorczyk, M., & Husmeier, D. (2011). Non-homogeneous dynamic Bayesian networks for continuous data. Machine Learning, 83(3), 355–419.

    Article  Google Scholar 

  • Gundaliya, P., Mathew, T.V., & Dhingra, S.L. (2008). Heterogeneous traffic flow modelling for an arterial using grid based approach. Journal of Advanced Transportation, 42(4), 467–491.

    Article  Google Scholar 

  • Harko, T., Lobo, F.S., & Mak, M. (2014). Exact analytical solutions of the susceptible-infected-recovered (SIR) epidemic model and of the sir model with equal death and birth rates. Applied Mathematics and Computation, 236, 184–194.

    Article  Google Scholar 

  • Harremoës, P. (2001). Binomial and poisson distributions as maximum entropy distributions. IEEE Transactions on Information Theory, 47(5), 2039–2041.

    Article  Google Scholar 

  • Hethcote, H.W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599–653.

    Article  Google Scholar 

  • House, T. (2012). Modelling epidemics on networks. Contemporary Physics, 53(3), 213–225.

    Article  Google Scholar 

  • James NA, Kejariwal A, & Matteson DS (2014). Leveraging cloud data to mitigate user experience from “breaking bad”. arXiv:14117955.

  • Jaynes, E.T. (1968). Prior probabilities. IEEE Transactions on Systems Science and Cybernetics, 4(3), 227–241.

    Article  Google Scholar 

  • Kermack, W.O., & McKendrick, A.G. (1927). Contributions to the mathematical theory of epidemics. part I. In Proceedings of the royal society of London. Series A (Vol. 115, pp. 700–721).

  • Kermack, W.O., & McKendrick, A.G. (1932). Contributions to the mathematical theory of epidemics. II. the problem of endemicity. In Proceedings of the Royal society of London Series A, 138(834), 55–83.

    Article  Google Scholar 

  • Kermack, W.O., & McKendrick, A.G. (1933). Contributions to the mathematical theory of epidemics. III. further studies of the problem of endemicity. In Proceedings of the Royal Society of London Series A, 141(843), 94–122.

    Article  Google Scholar 

  • Liu, Y., Niculescu-Mizil, A., Lozano, A.C., & Lu Y (2010). Learning temporal causal graphs for relational time-series analysis. In Proceedings of the 27th international conference on machine learning (pp. 687–694).

    Google Scholar 

  • Mairal, J., & Yu, B. (2012). Complexity analysis of the lasso regularization path. In Proceedings of the 29th international conference on machine learning (pp. 353–360).

    Google Scholar 

  • Mallikarjuna, C., & Rao, K.R. (2011). Heterogeneous traffic flow modelling: a complete methodology. Transportmetrica, 7(5), 321– 345.

    Article  Google Scholar 

  • Mills, C.E., Robins, J.M., & Lipsitch, M. (2004). Transmissibility of 1918 pandemic influenza. Nature, 432 (7019), 904–906.

    Article  Google Scholar 

  • Murphy, K. (2002). Dynamic bayesian networks: Representation, inference and learning. PhD thesis, Computer Science Division: UC, Berkeley.

  • Nanni, M., & Pedreschi, D. (2006). Time-focused clustering of trajectories of moving objects. Journal of Intelligent Information System, 27(3), 267–289.

    Article  Google Scholar 

  • Newman, M. (2010). Networks: an introduction. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Papazoglou, M.P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented computing: State of the art and research challenges. Computer, 40(11), 38–45.

    Article  Google Scholar 

  • Poole, D., & Raftery, A.E. (2000). Inference for deterministic simulation models: the Bayesian melding approach. Journal of the American Statistical Association, 95(452), 1244–1255.

    Article  Google Scholar 

  • Rangachari, P. (1997). Evidence-based medicine: old french wine with a new canadian label? Journal of the Royal Society of Medicine, 90(5), 280.

    Article  Google Scholar 

  • Ren, Y., Shen, J., Wang, J., Han, J., & Lee, S. (2015). Mutual verifiable provable data auditing in public cloud storage. Journal of Internet Technology, 16(2), 317–323.

    Google Scholar 

  • Robinson, J.W., & Hartemink, A.J. (2008). Non-stationary dynamic Bayesian networks. In Proceedings of the annual conference on neural information processing systems (pp. 1369–1376).

    Google Scholar 

  • Robinson, J.W., & Hartemink, A.J. (2010). Learning non-stationary dynamic Bayesian networks. Journal of Machine Learning Research, 11, 3647–3680.

    Google Scholar 

  • Romero, D.M., Meeder, B., & Kleinberg, J. (2011). Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proceedings of the 20th international conference on World Wide Web (pp. 695–704). ACM.

  • Schmidt, M., Niculescu-Mizil, A., Murphy, K., & et al. (2007). Learning graphical model structure using L1-regularization paths. In Proceedings of the 22 conference on artificial intelligence (Vol. 7, pp. 1278–1283).

  • Schulte W, & Natis Y (1996). Service oriented architectures, part 1. Gartner Report https://www.gartnercom/doc/302868.

  • Shuai, X., Chen, S., Ding, Y., Sun, Y., Busemeyer, J., & Tang, J. (2012). There is more than complex contagion: an indirect influence analysis on twitter. In Proceedings of the ACM SIGKDD workshop on mining data semantics (p. 4). ACM.

  • Song, L., Kolar, M., & Xing, E.P. (2009). Time-varying dynamic bayesian networks. In Proceedings of the annual conference on neural information processing systems (pp. 1732–1740).

    Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological), 267–288.

  • Treiber, M., & Kesting, A. (2013). Traffic flow dynamics. Traffic flow dynamics: data, models and simulation. Berlin Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Turner, M., Budgen, D., & Brereton, P. (2003). Turning software into a service. Computer, 36(10), 38–44.

    Article  Google Scholar 

  • Yang, B., Guo, C., & Jensen, C.S. (2013). Travel cost inference from sparse, spatio temporally correlated time series using markov models. In Proceedings of the VLDB Endowment, 6(9), 769–780.

    Article  Google Scholar 

  • Ye, L., & Dague, P. (2010). Diagnosability analysis of discrete event systems with autonomous components, European conference on artificial intelligence (pp. 105–110).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor W. Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, V.W., Wong, R.K., Chi, CH. et al. The design of a cloud-based tracker platform based on system-of-systems service architecture. Inf Syst Front 19, 1283–1299 (2017). https://doi.org/10.1007/s10796-017-9768-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-017-9768-9

Keywords

Navigation