Skip to main content

Advertisement

Log in

An artificial intelligence approach to classify pathogenic fungal genera of fungal keratitis using corneal confocal microscopy images

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Fungal keratitis is a common cause of blindness worldwide. Timely identification of the causative fungal genera is essential for clinical management. In vivo confocal microscopy (IVCM) provides useful information on pathogenic genera. This study attempted to apply deep learning (DL) to establish an automated method to identify pathogenic fungal genera using IVCM images.

Methods

Deep learning networks were trained, validated, and tested using a data set of 3364 IVCM images that collected from 100 eyes of 100 patients with culture-proven filamentous fungal keratitis. Two transfer learning approaches were investigated: one was a combined framework that extracted features by a DL network and adopted decision tree (DT) as a classifier; another was a complete supervised DL model which used DL-based fully connected layers to implement the classification.

Results

The DL classifier model revealed better performance compared with the DT classifier model in an independent testing set. The DL classifier model showed an area under the receiver operating characteristic curves (AUC) of 0.887 with an accuracy of 0.817, sensitivity of 0.791, specificity of 0.831, G-mean of 0.811, and F1 score of 0.749 in identifying Fusarium, and achieved an AUC of 0.827 with an accuracy of 0.757, sensitivity of 0.756, specificity of 0.759, G-mean of 0.757, and F1 score of 0.716 in identifying Aspergillus.

Conclusion

The DL model can classify Fusarium and Aspergillus by learning effective features in IVCM images automatically. The automated IVCM image analysis suggests a noninvasive identification of Fusarium and Aspergillus with clear potential application in early diagnosis and management of fungal keratitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IVCM:

In vivo confocal microscopy

AI:

Artificial intelligence

DL:

Deep learning

Grad-CAM:

Gradient-weighted class activation mapping

DT:

Decision tree

PCA:

Principal component analysis

LightGBM:

Light gradient boosting machine

G-mean:

Geometric mean

ROC:

Receiver operating characteristic

AUC:

Area under the ROC curve

CI:

Confidence interval

DET:

Detection error tradeoff

References

  1. Thomas PA (2003) Current perspectives on ophthalmic mycoses. Clin Microbiol Rev 16(4):730–797. https://doi.org/10.1128/CMR.16.4.730-797.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Acharya Y, Acharya B, Karki P (2017) Fungal keratitis: study of increasing trend and common determinants. Nepal J Epidemiol 7(2):685–693. https://doi.org/10.3126/nje.v7i2.17975

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kredics L, Narendran V, Shobana CS, Vágvölgyi C, Manikandan P (2015) Indo-Hungarian fungal keratitis working group. Filamentous fungal infections of the cornea: a global overview of epidemiology and drug sensitivity. Mycoses 58(4):243–60. https://doi.org/10.1111/myc.12306

    Article  CAS  PubMed  Google Scholar 

  4. Ahmadikia K, Aghaei Gharehbolagh S, Fallah B, Naeimi Eshkaleti M, Malekifar P, Rahsepar S, Getso MI, Sharma S, Mahmoudi S (2021) Distribution, prevalence, and causative agents of fungal keratitis: a systematic review and meta-analysis (1990 to 2020). Front Cell Infect Microbiol 11:698780. https://doi.org/10.3389/fcimb.2021.698780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nath R, Baruah S, Saikia L, Devi B, Borthakur AK, Mahanta J (2011) Mycotic corneal ulcers in upper Assam. Indian J Ophthalmol 59:367–371. https://doi.org/10.4103/0301-4738.83613

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leck AK, Thomas PA, Hagan M, Kaliamurthy J, Ackuaku E, John M, Newman MJ, Codjoe FS, Opintan JA, Kalavathy CM, Essuman V, Jesudasan CA, Johnson GJ (2002) Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br J Ophthalmol 86:1211–1215. https://doi.org/10.1136/bjo.86.11.1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen CA, Hsu SL, Hsiao CH, Ma DH, Sun CC, Yu HJ, Fang PC, Kuo MT (2020) Comparison of fungal and bacterial keratitis between tropical and subtropical Taiwan: a prospective cohort study. Ann Clin Microbiol Antimicrob 19(1):11. https://doi.org/10.1186/s12941-020-00353-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown GD (2011) Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 29:1–21. https://doi.org/10.1146/annurev-immunol-030409-101229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta MK, Chandra A, Prakash P, Tilak R (2018) Necessity to identify the causative agent for appropriate treatment in fungal corneal ulcer: an in vitro study. J Mycol Med 28(1):201–205. https://doi.org/10.1016/j.mycmed.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  10. Harbiyeli İİ, Erdem E, Görkemli N, İbayev A, Kandemir H, Açıkalın A, İlkit M, Yağmur M (2022) Clinical and mycological features of fungal keratitis: A retrospective single-center study (2012–2018). Turk J Ophthalmol 52(2):75–85. https://doi.org/10.4274/tjo.galenos.2021.09515

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vemuganti GK, Garg P, Gopinathan U, Naduvilath TJ, John RK, Buddi R, Rao GN (2002) Evaluation of agent and host factors in progression of mycotic keratitis: a histologic and microbiologic study of 167 corneal buttons. Ophthalmology 109(8):1538–1546. https://doi.org/10.1016/s0161-6420(02)01088-6

    Article  PubMed  Google Scholar 

  12. Ung L, Bispo PJM, Shanbhag SS, Gilmore MS, Chodosh J (2019) The persistent dilemma of microbial keratitis: global burden, diagnosis, and antimicrobial resistance. Surv Ophthalmol 64:255–271. https://doi.org/10.1016/j.survophthal.2018.12.003

    Article  PubMed  Google Scholar 

  13. Das S, Samant M, Garg P, Vaddavalli PK, Vemuganti GK (2009) Role of confocal microscopy in deep fungal keratitis. Cornea 28(1):11–13. https://doi.org/10.1097/ICO.0b013e318181cff7

    Article  PubMed  Google Scholar 

  14. Takezawa Y, Shiraishi A, Noda E, Hara Y, Yamaguchi M, Uno T, Ohashi Y (2010) Effectiveness of in vivo confocal microscopy in detecting filamentous fungi during clinical course of fungal keratitis. Cornea 29(12):1346–52. https://doi.org/10.1097/ICO.0b013e3181cd3c84

    Article  PubMed  Google Scholar 

  15. Chidambaram JD, Prajna NV, Larke N, Macleod D, Srikanthi P, Lanjewar S, Shah M, Lalitha P, Elakkiya S, Burton MJ (2017) In vivo confocal microscopy appearance of Fusarium and Aspergillus species in fungal keratitis. Br J Ophthalmol 101(8):1119–1123. https://doi.org/10.1136/bjophthalmol-2016-309656

    Article  PubMed  Google Scholar 

  16. Avunduk AM, Beuerman RW, Varnell ED, Kaufman HE (2003) Confocal microscopy of Aspergillus fumigatus keratitis. Br J Ophthalmol 87(4):409–410. https://doi.org/10.1136/bjo.87.4.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brasnu E, Bourcier T, Dupas B, Degorge S, Rodallec T, Laroche L, Borderie V, Baudouin C (2007) In vivo confocal microscopy in fungal keratitis. Br J Ophthalmol 91(5):588–591. https://doi.org/10.1136/bjo.2006.107243

    Article  PubMed  Google Scholar 

  18. Lv J, Zhang K, Chen Q, Chen Q, Huang W, Cui L, Li M, Li J, Chen L, Shen C, Yang Z, Bei Y, Li L, Wu X, Zeng S, Xu F, Lin H (2020) Deep learning-based automated diagnosis of fungal keratitis with in vivo confocal microscopy images. Ann Transl Med 8(11):706. https://doi.org/10.21037/atm.2020.03.134

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xu F, Jiang L, He W, Huang G, Hong Y, Tang F, Lv J, Lin Y, Qin Y, Lan R, Pan X, Zeng S, Li M, Chen Q, Tang N (2021) The clinical value of explainable deep learning for diagnosing fungal keratitis using in vivo confocal microscopy images. Front Med Lausanne 14(8):797616. https://doi.org/10.3389/fmed.2021.797616

    Article  Google Scholar 

  20. Xu F, Qin Y, He W, Huang G, Lv J, Xie X, Diao C, Tang F, Jiang L, Lan R, Cheng X, Xiao X, Zeng S, Chen Q, Cui L, Li M, Tang N (2021) A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images. PLoS ONE 16(6):e0252653. https://doi.org/10.1371/journal.pone.0252653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie L, Zhong W, Shi W, Sun S (2006) Spectrum of fungal keratitis in north China. Ophthalmology 113(11):1943–1948. https://doi.org/10.1016/j.ophtha.2006.05.035

    Article  PubMed  Google Scholar 

  22. Jayalakshmi T, Santhakumaran A (2011) Statistical normalization and back propagation for classification. Int J Comput Theory Eng 3:89. https://doi.org/10.7763/IJCTE

    Article  Google Scholar 

  23. Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3:9. https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  24. Deng J, Dong W, Socher R, Li LJ, Li K, Fei Fei L (2009) Imagenet: a large-scale hierarchical image database. IEEE Conf Comput Vis Pattern Recognit 2009:248–255. https://doi.org/10.1109/CVPR.2009.5206848

    Article  Google Scholar 

  25. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty first AAAI Conf Artif Intell 31:4278–4284. https://doi.org/10.1609/aaai.v31i1.11231

    Article  Google Scholar 

  26. Karamizadeh S, Abdullah SM, Manaf AA, Zamani M, Hooman A (2020) An overview of principal component analysis. J Signal Inf Process 4:173–175. https://doi.org/10.4236/jsip.2013.43B031

    Article  Google Scholar 

  27. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans R Soc Math Phys Eng Sci 374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  28. Ke G, Meng Q, Finley T, Wang T, Chen W, Wa M, Ye Q, Liu T (2017) Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst 30:3146–3154. https://doi.org/10.5555/3294996.3295074

    Article  Google Scholar 

  29. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(7):68. https://doi.org/10.5555/1953048.2021068

    Article  Google Scholar 

  30. Umemneku Chikere CM, Wilson K, Graziadio S, Vale L, Allen AJ (2019) Diagnostic test evaluation methodology: a systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard—an update. PLoS ONE 14(10):e0223832. https://doi.org/10.1371/journal.pone.0223832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845. https://doi.org/10.2307/2531595

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Cao Y, Li Y, Xiao X, Qiu Q, Yang M, Zhao Y, Cui L (2020) Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network. Comput Meth Programs Biomed 187:105019. https://doi.org/10.1016/j.cmpb.2019.105019

    Article  Google Scholar 

  33. Hou H, Cao Y, Cui X, Liu Z, Xu H, Wang C, Zhang W, Zhang Y, Fang Y, Geng Y, Liang W, Cai T, Lai H (2021) Medical image management and analysis system based on web for fungal keratitis images. Math Biosci Eng 18(4):3667–3679. https://doi.org/10.3934/mbe.2021183

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Guangxi Science and Technology Base and Talent Special Fund (Grant numbers [GuikeAD22035011]), Guangxi Clinical Ophthalmic Research Center (Grant numbers [GuikeAD19245193]), Guangxi Promotion of Appropriate Health Technologies Project (Grant numbers [S2019084]), and Guangxi Zhuang Autonomous Region Health Committee's Self-financing Project (Grant numbers [Z20201322]).

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by N.T., and all authors commented on previous versions of the manuscript. G.H., D.L., and L.J. performed the analyses. Q.C., W.H., F.T., Y.H., J.L., Y.Q., Y.L., and Q.L. contributed to data collection and measurements. Y.Q., R.L., and X.P. contributed to algorithm optimization. M.L. and P.L. were involved quality management. F.X. conceived the research, provided overall supervision, and undertook the responsibility of submitting the manuscript for publication. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fan Xu or Peng Lu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was approved by the ethics committee of the People’s Hospital of Guangxi Zhuang Autonomous Region, China. The approval number is KY-SY-2020–1.

Consent to participate

Informed consent was granted exemption by ethics committee of the People’s Hospital of Guangxi Zhuang Autonomous Region. All IVCM images applied in the study were completely anonymized. The submission does not include information that may identify the participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, N., Huang, G., Lei, D. et al. An artificial intelligence approach to classify pathogenic fungal genera of fungal keratitis using corneal confocal microscopy images. Int Ophthalmol 43, 2203–2214 (2023). https://doi.org/10.1007/s10792-022-02616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02616-8

Keywords

Navigation