Skip to main content

Advertisement

Log in

Long-term effects of trabeculectomy in primary open-angle glaucoma on segmented macular ganglion cell complex alterations

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to compare, using optical coherence tomography (OCT), the changes in the thickness of the macular nerve fiber layer (mNFL), macular ganglion cell layer (mGCL), macular inner plexiform layer (mIPL) and peripapillary global retinal nerve fiber layer (gRNFL) (in a span of 3 years) in surgically treated eyes with primary open-angle glaucoma (POAG).

Methods

The medical records of 32 consecutive POAG patients who underwent trabeculectomy with mitomycin-C, between January 2013 and December 2014, were retrospectively reviewed. Pre- and postoperative measurements of IOP and OCT were analyzed 1, 2 and 3 years after the operation.

Results

Among all patients, no significant changes in the thickness of the mNFL, mGCL or mIPL were found, with a significant reduction observed only in the IOP values and peripapillary gRNFL thickness during the 3-year postoperative period. In a subgroup analysis based on the preoperative peak IOPs (median value:41 mmHg), the thickness of the mNFL, mGCL and mIPL in the 3-year postoperative period increased significantly in the lower preoperative peak IOP group (IOP < 41 mmHg), whereas the macular OCT parameters in the 3-year postoperative period decreased in the higher preoperative peak IOP group.

Conclusions

Eyes exhibiting lesser preoperative peak IOP demonstrated greater preservation of the layer-by-layer segmented macular ganglion cell complex thickness as compared to eyes exhibiting greater preoperative peak IOP; also when the IOPs determined for the two groups in the period of follow-up were quite comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors declare that materials described in the manuscript, including all relevant raw data, will be freely available to any scientist wishing to use them for noncommercial purposes, without breaching participant confidentiality. Moreover, the authors ensure that their datasets are presented in the main manuscript.

References

  1. Inuzuka H, Sawada A, Yamamoto T (2018) Comparison of changes in macular ganglion cell-inner plexiform layer thickness between medically and surgically treated eyes with advanced glaucoma. Am J Ophthalmol 187:43–50

    Article  PubMed  Google Scholar 

  2. Collaborative Normal-Tension Glaucoma Study Group (1998) The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 126(4):498–505

    Article  Google Scholar 

  3. Kass MA, Heuer DK, Higginbotham EJ et al (2002) The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–830

    Article  PubMed  Google Scholar 

  4. Ramulu PY, Corcoran KJ, Corcoran SL et al (2007) Utilization of various glaucoma surgeries and procedures in medicare beneficiaries from 1995 to 2004. Ophthalmology 114(12):2265–2270

    Article  PubMed  Google Scholar 

  5. Medeiros FA, Pinheiro A, Moura FC et al (2002) Intraocular pressure fluctuations in medical versus surgically treated glaucomatous patients. J Ocul Pharmacol Ther 18(6):489–498

    Article  CAS  PubMed  Google Scholar 

  6. Konstas AG, Topouzis F, Leliopoulou O et al (2006) 24-hour intraocular pressure control with maximum medical therapy compared with surgery in patients with advanced open-angle glaucoma. Ophthalmology 113(5):761–5.e1

    Article  PubMed  Google Scholar 

  7. Savini G, Barboni P, Parisi V et al (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96(1):57–61

    Article  PubMed  Google Scholar 

  8. Bouillot A, Pierru A, Blumen-Ohana E et al (2019) Changes in choroidal thickness and optic nerve head morphology after filtering surgery: nonpenetrating deep sclerectomy versus trabeculectomy. BMC Ophthalmol 19(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gietzelt C, Lemke J, Schaub F et al (2018) Structural reversal of disc cupping after trabeculectomy alters bruch membrane opening-based parameters to assess neuroretinal rim. Am J Ophthalmol 194:143–152

    Article  PubMed  Google Scholar 

  10. Krzyżanowska-Berkowska P, Melińska A, Helemejko I et al (2018) Evaluating displacement of lamina cribrosa following glaucoma surgery. Graefes Arch Clin Exp Ophthalmol 256(4):791–800

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kadziauskienė A, Jašinskienė E, Ašoklis R et al (2018) Long-term shape, curvature, and depth changes of the lamina cribrosa after trabeculectomy. Ophthalmology 125(11):1729–1740

    Article  PubMed  Google Scholar 

  12. Lee SH, Yu DA, Kim TW et al (2016) Reduction of the lamina cribrosa curvature after trabeculectomy in glaucoma. Invest Ophthalmol Vis Sci 57(11):5006–5014

    Article  PubMed  Google Scholar 

  13. Lee EJ, Kim TW (2015) Lamina cribrosa reversal after trabeculectomy and the rate of progressive retinal nerve fiber layer thinning. Ophthalmology 122(11):2234–2242

    Article  PubMed  Google Scholar 

  14. Aydin A, Wollstein G, Price LL et al (2003) Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery. Ophthalmology 110(8):1506–1511

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chang PT, Sekhon N, Budenz DL et al (2007) Effect of lowering intraocular pressure on optical coherence tomography measurement of peripapillary retinal nerve fiber layer thickness. Ophthalmology 114(12):2252–2258

    Article  PubMed  Google Scholar 

  16. Chang TC, Grajewski AL (2016) Paradoxical thinning of the retinal nerve fiber layer after reversal of cupping: a case report of primary infantile glaucoma. Indian J Ophthalmol 64(9):690–692

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raghu N, Pandav SS, Kaushik S et al (2012) Effect of trabeculectomy on RNFL thickness and optic disc parameters using optical coherence tomography. Eye 26(8):1131–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim WJ, Kim KN, Sung JY et al (2019) Relationship between preoperative high intraocular pressure and retinal nerve fibre layer thinning after glaucoma surgery. Sci Rep 9(1):13901

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lommatzsch C, Rothaus K, Koch JM et al (2019) Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography. Int Ophthalmol 39(11):2583–2594

    Article  CAS  PubMed  Google Scholar 

  20. Ratnarajan G, Jolly JK, Yusuf IH et al (2018) The effect of trabeculectomy surgery on the central visual field in patients with glaucoma using microperimetry and optical coherence tomography. Eye 32(8):1365–1371

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karasheva G, Goebel W, Klink T et al (2003) Changes in macular thickness and depth of anterior chamber in patients after filtration surgery. Graefes Arch Clin Exp Ophthalmol 241(3):170–175

    Article  PubMed  Google Scholar 

  22. Elgin U, Şen E, Tırhış H et al (2012) Comparison of the effect of trabeculectomy with mitomycin C on macular thickness in primary open-angle glaucoma and pseudoexfoliative glaucoma. Turk J Ophtalmol 42:1–4

    Article  Google Scholar 

  23. Kadziauskienė A, Strelkauskaitė E, Mockevičiūtė E et al (2017) Changes in macular thickness after trabeculectomy with or without adjunctive 5-fluorouracil. Acta Med Litu 24(2):93–100

    PubMed  PubMed Central  Google Scholar 

  24. Sesar A, Cavar I, Sesar AP et al (2013) Macular thickness after glaucoma filtration surgery. Coll Antropol 37(3):841–845

    PubMed  Google Scholar 

  25. Pitale PM, Chatha U, Patel V et al (2016) Changes in macular thickness following glaucoma surgery. Int J Ophthalmol 9(8):1236–1237

    PubMed  PubMed Central  Google Scholar 

  26. Pirhan D, Yüksel N, Çinik R et al (2015) Comparison of the effect of trabeculectomy and phacotrabeculectomy on macular thickness in primary open-angle glaucoma. Medical J Kocaeli 4(3):37–42

    Google Scholar 

  27. Holló G (2017) Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma 26(1):e7–e10

    Article  PubMed  Google Scholar 

  28. Zéboulon P, Lévêque PM, Brasnu E et al (2017) Effect of surgical intraocular pressure lowering on peripapillary and macular vessel density in glaucoma patients: an optical coherence tomography angiography study. J Glaucoma 26(5):466–472

    Article  PubMed  Google Scholar 

  29. Kim JA, Kim TW, Lee EJ et al (2018) microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 59(11):4614–4621

    Article  CAS  PubMed  Google Scholar 

  30. Jampel HD, Musch DC, Gillespie BW et al (2005) Perioperative complications of trabeculectomy in the collaborative initial glaucoma treatment study (CIGTS). Am J Ophthalmol 140(1):16–22

    Article  PubMed  Google Scholar 

  31. Cantor LB, Mantravadi A, WuDunn D et al (2003) Morphologic classification of filtering blebs after glaucoma filtration surgery: the Indiana Bleb appearance grading scale. J Glaucoma 12(3):266–271

    Article  PubMed  Google Scholar 

  32. Asaoka K, Kunimatsu-Sanuki S, Kokubun T et al (2019) Optical coherence tomography assessment of risk factors for visual acuity decline after trabeculectomy in patients with advanced open-angle glaucoma. J Glaucoma 28(9):780–784

    Article  PubMed  Google Scholar 

  33. Bowd C, Zangwill LM, Weinreb RN et al (2017) Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma. Am J Ophthalmol 175:37–44

    Article  PubMed  Google Scholar 

  34. Belghith A, Medeiros FA, Bowd C et al. (2016) Structural change can be detected in advanced-glaucoma eyes. Invest Ophthalmol Vis Sci 57(9):511−518

  35. Shin HY, Park HL, Jung KI et al (2014) Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss. Ophthalmology 121(1):93–99

    Article  PubMed  Google Scholar 

  36. Leung CKS, Ye C, Weinreb RN et al (2013) Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology 120(12):2485–2492

    Article  PubMed  Google Scholar 

  37. Hammel N, Belghith A, Weinreb RN et al (2017) Comparing the rates of retinal nerve fiber layer and ganglion cell-inner plexiform layer loss in healthy eyes and in glaucoma eyes. Am J Ophthalmol 178:38–50

    Article  PubMed  Google Scholar 

  38. Lee WJ, Kim YK, Park KH et al (2017) Trend-based analysis of ganglion cell-inner plexiform layer thickness changes on optical coherence tomography in glaucoma progression. Ophthalmology 124(9):1383–1391

    Article  PubMed  Google Scholar 

  39. Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46(11):4189–4199

    Article  PubMed  Google Scholar 

  40. Membrey WL, Poinoosawmy DP, Bunce C et al (2000) Glaucoma surgery with or without adjunctive antiproliferatives in normal tension glaucoma: 1 intraocular pressure control and complications. Br J Ophthalmol 84(6):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim CS, Kim KN, Kang TS et al (2016) Changes in axial length and refractive error after noninvasive normalization of intraocular pressure from elevated levels. Am J Ophthalmol 163:132-139.e2

    Article  PubMed  Google Scholar 

  42. Burgoyne CF, Downs JC, Bellezza AJ et al (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24(1):39–73

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Seher Gökçe for statistical analysis, and Enago for the English language review.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Atılım Armağan Demirtaş, Mine Karahan, Seyfettin Erdem, Adar Aslan Kaya and Uğur Keklikçi. The first draft of the manuscript was written by Atılım Armağan Demirtaş and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Atılım Armağan Demirtaş.

Ethics declarations

Conflicts of interest

All the authors declare that they have no conflict of interest and no financial disclosure.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Ethics Committee of the Medical University of Dicle University, Diyarbakır, Turkey, (decision date: 5 December 2019, No. 282).

Consent to participate

Informed consent was obtained from all participants.

Consent to publish

Additional informed consent was obtained from all participants for whom identifying information is included in this article.

Plant reproducibility

Not applicable.

Clinical trial registration

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirtaş, A.A., Karahan, M., Erdem, S. et al. Long-term effects of trabeculectomy in primary open-angle glaucoma on segmented macular ganglion cell complex alterations. Int Ophthalmol 41, 2249–2263 (2021). https://doi.org/10.1007/s10792-021-01840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01840-y

Keywords

Navigation