Skip to main content

Advertisement

Log in

The effect of epiretinal membrane surgery on macular microvasculature: an optical coherence tomography angiography study

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate both the possible effects of both idiopathic epiretinal membrane (IERM) itself and surgery on macular microvascular structure using optical coherence tomography angiography (OCT-A) and to determine the associations with structural and visual outcomes.

Methods

Twenty-four eyes of 24 patients with IERM and 24 eyes of 12 healthy controls were included. Vascular parameters, including the superficial capillary plexus (SCP) and deep capillary plexus (DCP) were evaluated by OCT-A prior to and 6 months after ERM removal. The foveal avascular zone (FAZ, mm2) area, parafoveal vascular density (VD, %) and flow area (mm2) measurements were used to evaluate the macular vascular integrity.

Results

The mean preoperative vascular density (VD) of both plexuses was lower in eyes with IERM than in healthy eyes (both p = 0.0001). The mean preoperative flow area of the DCP in eyes with IERM was significantly lower than that in the control eyes (p = 0.016). There was no significant difference in the VD or flow area in either superficial or deep capillary plexuses as a result of surgery (SCP; p = 0.957, p = 0.97, DCP; p = 0.861, p = 0.6, respectively). Both the parafoveal DCP-VD and flow area in DCP were negatively correlated with best-corrected visual acuity (logMAR) at 6 months postoperatively (r = −0.46, p = 0.03; r = −0.52, p = 0.01, respectively).

Conclusion

Epiretinal membranes may cause dynamic microvascular changes at the macula. However, the effect of surgery on microvasculature may be more limited than that on anatomical and visual recovery. OCT-A may serve as a useful tool in understanding the pathophysiological basis of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Compera D, Entchev E, Haritoglou C, Scheler R, Mayer WJ, Wolf A, Kampik A, Schumann RG (2015) Lamellar hole-associated epiretinal proliferation in comparison to epiretinal membranes of macular pseudoholes. Am J Ophthalmol 160:373–384

    Article  Google Scholar 

  2. McCarty DJ, Mukesh BN, Chikani V, Wang JJ, Mitchell P, Taylor HR, McCarty CA (2005) Prevalence and associations of epiretinal membranes in the visual impairment project. Am J Ophthalmol 140:288–294

    Article  Google Scholar 

  3. Wiznia RA (1986) Posterior vitreous detachment and idiopathic preretinal macular gliosis. Am J Ophthalmol 102(2):196–198

    Article  CAS  Google Scholar 

  4. Bu SC, Kuijer R, Li XR, Hooymans JMM, Los LI (2014) Idiopathic epiretinal membrane. Retina 34:2317–2335

    Article  CAS  Google Scholar 

  5. Oberstein SYL, Byun J, Herrera D, Chapin EA, Fisher SK, Lewis GP (2011) Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration. Mol Vision 17:794–1805

    Google Scholar 

  6. McDonald HR, Verre WP, Aaberg TM (1986) Surgical Management of Idiopathic Epiretinal Membranes. Ophthalmol 93:978–983

    Article  CAS  Google Scholar 

  7. Dellomo R, Cifariello F, Dellomo E, De Lena A, Di lorioFilippelli Costagliola RMC (2013) Influence of retinal vessel printings on metamorphopsia and retinal architectural abnormalities in eyes with idiopathic macular epiretinal membrane. Investig Ophthalmol Vis Sci 54(12):7803–7811

    Article  Google Scholar 

  8. Kim YJ, Kim S, Lee JY, Kim JG, Yoon YH (2018) Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br J Ophthalmol 102:1086–1091

    Article  Google Scholar 

  9. Liu J, Qian Y, Yang S, Yan L, Wang Y, Gao M, Liu L, Xiao Y, Mo B, Liu W (2017) Pathophysiological correlations between fundus fluorescein angiography and optical coherence tomography results in patients with idiopathic epiretinal membranes. Exp Therapeutic Med 14(6):5785–5792

    Google Scholar 

  10. KadonosonoItoh NomuraOhno KNES (1999) Capillary blood flow velocity in patients with idiopathic epiretinal membranes. Retina 19:536–539

    Article  Google Scholar 

  11. Chang WC, Lin C, Lee CH, Sung TL, Tung TH, Liu JH (2017) Vitrectomy with or without internal limiting membrane peeling for idiopathic epiretinal membrane: a meta-analysis. PLoS ONE 12:e0179105

    Article  Google Scholar 

  12. Scheerlinck LM, van der Valk R, van Leeuwen R (2015) Predictive factors for postoperative visual acuity in idiopathic epiretinal membrane: a systematic review. Acta Ophthalmol 93:203–212

    Article  Google Scholar 

  13. Yang HS, Kim JT, Joe SG, Lee JY, Yoon YH (2015) Postoperative restoration of foveal inner retinal configuration in patients with epiretinal membrane and abnormally thick inner retina. Retina 35:111–119

    Article  Google Scholar 

  14. Joe SG, Lee KS, Lee JY, Hwang JU, Kim JG, Yoon YH (2013a) Inner retinal layer thickness is the major determinant of visual acuity in patients with idiopathic epiretinal membrane. Acta Ophthalmol 91:e242–e243

    Article  Google Scholar 

  15. Koustenis AJ, Harris A, Gross J, Januleviciene I, Shah A, Siesky B (2017) Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol 101:16–20

    Article  Google Scholar 

  16. Chen H, Chi W, Cai X, Deng Y, Jiang X, Wei Y, Zhang S (2019) Macular microvasculature features before and after vitrectomy in idiopathic macular epiretinal membrane: an OCT angiography analysis. Eye (Lond) 33:619–628

    Article  CAS  Google Scholar 

  17. Hagag AM, Gao SS, Jia Y, Huang D (2017) Optical coherence tomography angiography technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol 7:115–129

    Article  Google Scholar 

  18. Kofod M, Cour M (2012) Quantification of retinal tangential movement in epiretinal membranes. Ophthalmol 119:1886–1891

    Article  Google Scholar 

  19. Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J (2012) Relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci 53:1628–1636

    Article  Google Scholar 

  20. Yoon YS, Woo JM, Woo JE, Min JK (2018) Superficial foveal avascular zone area changes before and after idiopathic epiretinal membrane surgery. Int J Ophthalmol 11:1711–1715

    PubMed  PubMed Central  Google Scholar 

  21. Kitagawa Y, Shimada H, Shinojima A, Nakashizuka H (2019) Foveal avascular zone area analysis using optical coherence tomography angiography before and after idiopathic epiretinal membrane surgery. Retina 39:339–346

    Article  Google Scholar 

  22. Romano MR, Cennamo G, Schiemer S, Rossi C, Sparnelli F, Cennamo G (2017) Deep and superficial OCT angiography changes after macular peeling: idiopathic vs diabetic epiretinal membranes. Graefes Arch Clin Exp Ophthalmol 255:681–689

    Article  Google Scholar 

  23. Kumagai K, Furukawa M, Suetsugu T, Ogino N (2018) Foveal avascular zone area after internal limiting membrane peeling for epiretinal membrane and macular hole compared with that of fellow eyes and healthy controls. Retina 38:1786–1794

    Article  Google Scholar 

  24. Kumagai K, Ogino N, Furukawa M, Ooya R, Horie E (2018) Early centripetal displacements of capillaries in macular region caused by internal limiting membrane peeling. Clin Ophthalmol 12:755–763

    Article  Google Scholar 

  25. Okawa Y, Maruko I, Kawai M, Hasegawa T, Arakawa H, Iida T (2019) Foveal structure and vasculature in eyes with idiopathic epiretinal membrane. PLoS ONE 14:e0214881

    Article  CAS  Google Scholar 

  26. Lin TC, Chung YC, Lin CY, Lee FL, Chen JS (2016) Focal nonperfusion of deep retinal capillary plexus in eyes with epiretinal membranes revealed by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47:404–409

    Article  Google Scholar 

  27. Joe SG, Lee KS, Lee JY, Hwang JU, Kim JG, Yoon Y (2013b) Inner retinal layer thickness is the major determinant of visual acuity in patients with idiopathic epiretinal membrane. Acta Ophthalmol 91:242–243

    Article  Google Scholar 

  28. Birol G, Wang S, Budzynski E, Wirawan NDW, Linsenmeier RA (2007) Oxygen distribution and consumption in the macaque retina. Am J Physiol Heart Circ Physiol 293:H1696–H1704

    Article  CAS  Google Scholar 

  29. Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138

    Article  Google Scholar 

  30. Moon BG, Um T, Lee J, Yoon YH (2018) Correlation between deep capillary plexus perfusion and long term photoreceptor recovery after diabetic macular edema treatment. Ophthalmol Retina 2:235–243

    Article  Google Scholar 

  31. Chang YC, Lin WN, Chen KJ, Wu HJ, Lee CL, Chen CH, Wu KY, Wu WC (2015) Correlation between the dynamic postoperative visual outcome and the restoration of foveal microstructures after macular hole surgery. Am J Ophthalmol 160:100–6.e1

    Article  Google Scholar 

  32. Bottoni F, Angelis De, Luccarelli S, Cigada M, Staurenghi G (2011) The dynamic healing process of idiopathic macular holes after surgical repair: a spectral-domain optical coherence tomography study. Invest Ophthalmol Vis Sci 52:4439–4446

    Article  Google Scholar 

Download references

Acknowledgements

None of the authors have any proprietary interest in any material mentioned. The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puren Isik-Ericek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Excel data used to support the findings of this study are available from the corresponding author upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik-Ericek, P., Sizmaz, S., Esen, E. et al. The effect of epiretinal membrane surgery on macular microvasculature: an optical coherence tomography angiography study. Int Ophthalmol 41, 777–786 (2021). https://doi.org/10.1007/s10792-020-01630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01630-y

Keywords

Navigation