Skip to main content

Advertisement

Log in

Evaluation of retinal vascular structure after epiretinal membrane surgery by optical coherence tomography angiography

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the retinal vascular structure before and after the epiretinal membrane (ERM) surgery by optical coherence tomography angiography (OCTA).

Methods

Twenty-two eyes with ERM (study eyes) had been evaluated by OCTA for superficial capillary plexus (SCP) and deep capillary plexus (DCP) vessel density (VD) at foveal and parafoveal regions and foveal avascular zone (FAZ) before and after ERM removal surgery. Twenty-two fellow eyes were selected as control group.

Results

Preoperative VD of SCP and DCP were significantly lower in ERM eyes than in controls in both foveal and parafoveal areas (p < 0.05, for all). The difference regressed in SCP (fovea: 18.04 ± 3.1 vs 19.98 ± 18 p = 0.002 and parafovea: 47.33 ± 3.54 vs 49.71 ± 28 p = 0.001), but persisted in DCP (fovea: 17.25 ± 3.52 vs 17.57 ± 4.01 p = 0.856 and parafovea: 50.12 ± 4.35 vs 50.93 ± 3.24 p = 0.791) in study eyes, postoperatively. Superficial and deep FAZ areas were significantly smaller in study eyes than controls. Postoperatively, superficial FAZ area enlarged (0.288 ± 0.10 vs 0.307 ± 0.08 p = 0.012), whereas deep FAZ area did not (0.324 ± 0.09 vs 0.338 ± 0.07 p = 0.435). FAZ area was correlated with the best-corrected visual acuity in ERM eyes.

Conclusion

Vascular damage in SCP and DCP was demonstrated by OCTA in eyes with ERM. ERM removal surgery mainly improves superficial changes caused by ERM. Changes in deep retinal flow may be associated with visual outcomes after ERM removal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code availability

None.

Data availability

Authors declare that data and material of the study are available in Ekol Hospital archives.

References

  1. Miyazaki M, Nakamura H, Kubo M et al (2003) Prevalence and risk factors for epiretinal membranes in a Japanese population: the Hisayama study. Graefes Arch Clin Exp Ophthalmol 241:642–646. https://doi.org/10.1007/s00417-003-0723-8

    Article  PubMed  Google Scholar 

  2. Smiddy WE, Maguire AM, Green WR et al (1989) Idiopathic epiretinal membranes: ultrastructural characteristics and clinicopathologic correlation. Retina 25:811–820. https://doi.org/10.1097/00006982-200507001-00012

    Article  Google Scholar 

  3. Cho KH, Park SJ, Cho JH et al (2016) Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane. Am J Ophthalmol 168:139–149. https://doi.org/10.1016/j.ajo.2016.05.011

    Article  PubMed  Google Scholar 

  4. Chen H, Chi W, Cai X et al (2019) Macular microvasculature features before and after vitrectomy in idiopathic macular epiretinal membrane: an OCT angiography analysis. Eye 33(4):619–628. https://doi.org/10.1038/s41433-018-0272-3 (London)

    Article  CAS  PubMed  Google Scholar 

  5. Yoon YS, Woo JM, Woo JE et al (2018) Superficial foveal avascular zone area changes before and after idiopathic epiretinal membrane surgery. Int J Ophthalmol 11(10):1711–1715. https://doi.org/10.18240/ijo.2018.10.21

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim YJ, Kim S, Lee JY et al (2018) Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br J Ophthalmol 102(8):1086–1091. https://doi.org/10.1136/bjophthalmol-2017-311188

    Article  PubMed  Google Scholar 

  7. Kitagawa Y, Shimada H, Shinojima A et al (2017) Foveal avascular zone area analysis using optical coherence tomography angiography before and after idiopathic epiretinal membrane surgery. Retina 39(2):339–346. https://doi.org/10.1097/IAE.0000000000001972

    Article  Google Scholar 

  8. Okawa Y, Maruko I, Kawai M et al (2019) Foveal structure and vasculature in eyes with idiopathic epiretinal membrane. PLoS ONE. https://doi.org/10.1371/journal.pone.0214881

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mastropasqua R, D’Aloisio R, Viggiano P et al (2019) Early retinal flow changes after vitreoretinal surgery in idiopathic epiretinal membrane using swept source optical coherence tomography angiography. J Clin Med. https://doi.org/10.3390/jcm8122067

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chang WC, Lin C, Lee CH et al (2017) Vitrectomy with or without internal limiting membrane peeling for idiopathic epiretinal membrane: a meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0179105

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hecht I, Yeshurun I, Bartov E et al (2018) Retinal layers thickness changes following epiretinal membrane surgery. Eye 32(3):555–562. https://doi.org/10.1038/eye.2017.233 (London)

    Article  CAS  PubMed  Google Scholar 

  12. Kishi S, Shimizu K (1994) Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis. Am J Ophthalmol 118:451–456. https://doi.org/10.1016/s0002-9394(14)75795-2

    Article  CAS  PubMed  Google Scholar 

  13. Onishi AC, Fawzi AA (2019) An overview of optical coherence tomography angiography and the posterior pole. Ther Adv Ophthalmo. https://doi.org/10.1177/2515841419840249

    Article  Google Scholar 

  14. Yagi T, Sakata K, Funatsu H et al (2012) Macular microcirculation in patients with epiretinal membrane before and after surgery. Graefes Arch Clin Exp Ophthalmol 250(6):931–934. https://doi.org/10.1007/s00417-011-1838-y

    Article  PubMed  Google Scholar 

  15. Kadonosono K, Itoh N, Nomura E et al (1999) Perifoveal microcirculation in eyes with epiretinal membranes. Br J Ophthalmol 83(12):1329–1331. https://doi.org/10.1136/bjo.83.12.1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee EK, Yu HG (2014) Ganglion cell-inner plexiform layer thickness after epiretinal membrane surgery: a spectral-domain optical coherence tomography study. Ophthalmology 121(8):1579–1587. https://doi.org/10.1016/j.ophtha.2014.02.010

    Article  PubMed  Google Scholar 

  17. Pierro L, Iuliano L, Marchese A, Arrigo A, Rabiolo A, Bandello F (2019) Reduced vascular perfusion density in idiopathic epiretinal membrane compared to macular pseudohole. Int Ophthalmol. 39(12):2749–2755. https://doi.org/10.1007/s10792-019-01119-3

    Article  PubMed  Google Scholar 

  18. Hirata A, Nakada H, Mine K et al (2019) Relationship between the morphology of the foveal avascular zone and the degree of aniseikonia before and after vitrectomy in patients with unilateral epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 257(3):507–515. https://doi.org/10.1007/s00417-019-04245-x

    Article  PubMed  Google Scholar 

  19. Hosoda Y, Ooto S, Hangai M et al (2015) Foveal photoreceptor deformation as a significant predictor of postoperative visual outcome in idiopathic epiretinal membrane surgery. Invest Ophthalmol Vis Sci 56(11):6387–6393. https://doi.org/10.1167/iovs.15-16679

    Article  PubMed  Google Scholar 

  20. Wolf S, Schnurbusch U, Wiedemann P et al (2004) Peeling of the basal membrane in the human retina: ultrastructural effects. Ophthalmology 111:238–243. https://doi.org/10.1016/j.ophtha.2003.05.022

    Article  PubMed  Google Scholar 

  21. Pichi F, Lembo A, Morara M et al (2014) Early and late inner retinal changes after inner limiting membrane peeling. Int Ophthalmol 34(2):437–446. https://doi.org/10.1007/s10792-013-9831-6

    Article  PubMed  Google Scholar 

  22. Mastropasqua L, Borrelli E, Carpineto P et al (2018) Microvascular changes after vitrectomy with internal limiting membrane peeling: an optical coherence tomography angiography study. Int Ophthalmol. 38(4):1465–1472. https://doi.org/10.1007/s10792-017-0608-1

    Article  PubMed  Google Scholar 

  23. Hwang JU, Sohn J, Moon BG et al (2012) Assessment of macular function for idiopathic epiretinal membranes classified by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:3562–3569. https://doi.org/10.1167/iovs.12-9762

    Article  PubMed  Google Scholar 

  24. Yang HS, Kim JT, Joe SG et al (2015) Postoperative restoration of foveal inner retinal configuration in patients with epiretinal membrane and abnormally thick inner retina. Retina 35:111–119. https://doi.org/10.1097/IAE.0000000000000276

    Article  PubMed  Google Scholar 

  25. Joe SG, Lee KS, Lee JY et al (2013) Inner retinal layer thickness is the major determinant of visual acuity in patients with idiopathic epiretinal membrane. Acta Ophthalmol 91:e242–e243. https://doi.org/10.1111/aos.12017

    Article  PubMed  Google Scholar 

  26. Lin TC, Chung YC, Lin CY et al (2016) Focal nonperfusion of deep retinal capillary plexus in eyes with epiretinal membranes revealed by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47:404–409. https://doi.org/10.3928/23258160-20160419-02

    Article  PubMed  Google Scholar 

  27. Okamoto F, Sugiura Y, Okamoto Y et al (2015) Inner nuclear layer thickness as a prognostic factor for metamorphopsia after epiretinal membrane surgery. Retina 35:2107–2114. https://doi.org/10.1097/IAE.0000000000000602

    Article  CAS  PubMed  Google Scholar 

  28. Koo HC, Rhim WI, Lee EK (2012) Morphologic and functional association of retinal layers beneath the epiretinal membrane with spectral-domain optical coherence tomography in eyes without photoreceptor abnormality. Graefes Arch Clin Exp Ophthalmol 250:491–498. https://doi.org/10.1007/s00417-011-1848-

    Article  PubMed  Google Scholar 

  29. Chung H, Son G, Hwang DJ et al (2015) Relationship between vertical and horizontal aniseikonia scores and vertical and horizontal OCT Images in idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci 56:6542–6548. https://doi.org/10.1167/iovs.15-16874

    Article  PubMed  Google Scholar 

Download references

Funding

No financial support was received for this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Yuce.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Approval for this study was obtained from the Alanya Alaaddin Keykubat University Ethics Committee (Protocol No.11–9/2019).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Participants signed informed consent regarding publishing their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuce, B., Cinar, E., Aslan, F. et al. Evaluation of retinal vascular structure after epiretinal membrane surgery by optical coherence tomography angiography. Int Ophthalmol 41, 621–627 (2021). https://doi.org/10.1007/s10792-020-01617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01617-9

Keywords

Navigation