Skip to main content

Advertisement

Log in

Assessment of superficial retinal microvascular density in healthy myopia

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate retinal microvasculature in healthy myopia and investigate the correlation between microvascular density and ocular factors.

Methods

A total of 174 eyes from 174 healthy Korean subjects were included. The eyes were divided into four groups according to refraction: emmetropia [21 eyes, − 1.00 D ≤ mean spherical equivalent (MSE) < + 0.75 D], mild myopia (32 eyes, − 3.00 D ≤ MSE < − 1.00 D), moderate myopia (76 eyes, − 6.00 D ≤ MSE < − 3.00 D), and high myopia (45 eyes, MSE < − 6.00 D). Images of retinal vasculature in parapapillary and parafoveal area were obtained using optical coherence tomography angiography. Superficial retinal microvascular density was measured for correlation analysis with ocular parameters.

Results

High myopia was found to have a lower superficial parapapillary microvascular density compared with the other groups in total parapapillary area, and in sectors of nasal and inferonasal (all p ≤ 0.001). The superficial parapapillary microvascular density showed a negative correlation with axial length (AL) and intraocular pressure (IOP) (β = − 0.479, p = 0.008 and β = − 0.160, p = 0.048, respectively), and a positive correlation with parapapillary retinal nerve fiber layer (RNFL) thickness (β = 0.140, p < 0.001). However, there was no significant difference in superficial parafoveal microvascular density among all groups (p > 0.05).

Conclusions

This study reveals that superficial parapapillary microvascular density is lower in high myopia and has correlation with AL, IOP, and parapapillary RNFL thickness. It also indicates that superficial parafoveal microvascular density tends to be unaffected by healthy myopia. These retinal microvascular alterations may facilitate understanding the pathogenesis of glaucomatous optic nerve damage in high myopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pan CW, Ramamurthy D, Saw SM (2012) Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt 32(1):3–16

    Article  PubMed  Google Scholar 

  2. Pan C-W, Zheng Y-F, Anuar AR, Chew M, Gazzard G, Aung T, Cheng C-Y, Wong TY, Saw S-M (2013) Prevalence of refractive errors in a multiethnic Asian population: the Singapore epidemiology of eye disease study. Invest Ophthalmol Vis Sci 54(4):2590–2598

    Article  PubMed  Google Scholar 

  3. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5):1036–1042

    Article  PubMed  Google Scholar 

  4. Saw SM, Gazzard G, Shih-Yen EC, Chua WH (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt 25(5):381–391

    Article  PubMed  Google Scholar 

  5. Cho B-J, Shin JY, Yu HG (2016) Complications of pathologic myopia. Eye Contact Lens 42(1):9–15

    Article  PubMed  Google Scholar 

  6. Vitale S, Sperduto RD, Ferris FL (2009) Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch Ophthalmol 127(12):1632–1639

    Article  PubMed  Google Scholar 

  7. Dimitrova G, Tamaki Y, Kato S, Nagahara M (2002) Retrobulbar circulation in myopic patients with or without myopic choroidal neovascularisation. Br J Ophthalmol 86(7):771–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benavente-Pérez A, Hosking SL, Logan NS, Broadway DC (2010) Ocular blood flow measurements in healthy human myopic eyes. Graefe’s Arch Clin Exp Ophthalmol 248(11):1587–1594

    Article  Google Scholar 

  9. Shimada N, Ohno-Matsui K, Harino S, Yoshida T, Yasuzumi K, Kojima A, Kobayashi K, Futagami S, Tokoro T, Mochizuki M (2004) Reduction of retinal blood flow in high myopia. Graefe’s Arch Clin Exp Ophthalmol 242(4):284–288

    Article  Google Scholar 

  10. Azemin C, Zulfaezal M, Mohamad Daud N, Ab Hamid F, Zahari I, Sapuan AH (2014) Influence of refractive condition on retinal vasculature complexity in younger subjects. Sci World J 2014:783525

  11. Lim LS, Cheung CY-l, Lin X, Mitchell P, Wong TY, Mei-Saw S (2011) Influence of refractive error and axial length on retinal vessel geometric characteristics. Invest Ophthalmol Vis Sci 52(2):669–678

    Article  PubMed  Google Scholar 

  12. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D (2012) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3(12):3127–3137

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7):1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  15. Teussink MM, Breukink MB, van Grinsven MJ, Hoyng CB, Klevering BJ, Boon CJ, de Jong EK, Theelen T (2015) OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci 56(9):5229–5237

    Article  CAS  PubMed  Google Scholar 

  16. Shahlaee A, Samara WA, Hsu J, Say EAT, Khan MA, Sridhar J, Hong BK, Shields CL, Ho AC (2016) In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol 165:39–46

    Article  PubMed  Google Scholar 

  17. Wang X, Jiang C, Ko T, Kong X, Yu X, Min W, Shi G, Sun X (2015) Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefe’s Arch Clin Exp Ophthalmol 253(9):1557–1564

    Article  Google Scholar 

  18. Wei E, Jia Y, Tan O, Potsaid B, Liu JJ, Choi W, Fujimoto JG, Huang D (2013) Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS ONE 8(12):e81343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu J, Jiang C, Wang X, Zhu L, Gu R, Xu H, Jia Y, Huang D, Sun X (2015) Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci 56(5):3212–3217

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Kong X, Jiang C, Li M, Yu J, Sun X (2016) Is the peripapillary retinal perfusion related to myopia in healthy eyes? A prospective comparative study. BMJ Open 6(3):e010791

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mo J, Duan A, Chan S, Wang X, Wei W (2017) Vascular flow density in pathological myopia: an optical coherence tomography angiography study. BMJ Open 7(2):e013571

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, Wang J, Jiang H, Yang X, Feng L, Hu L, Wang L, Lu F, Shen M (2016) Retinal microvasculature alteration in high myopia. Invest Ophthalmol Vis Sci 57(14):6020–6030

    Article  PubMed  Google Scholar 

  23. Li M, Yang Y, Jiang H, Gregori G, Roisman L, Zheng F, Ke B, Qu D, Wang J (2017) Retinal microvascular network and microcirculation assessments in high myopia. Am J Ophthalmol 174:56–67

    Article  PubMed  Google Scholar 

  24. Sung MS, Kang YS, Heo H, Park SW (2016) Optic disc rotation as a clue for predicting visual field progression in myopic normal-tension glaucoma. Ophthalmology 123(7):1484–1493

    Article  PubMed  Google Scholar 

  25. Sung MS, Kang YS, Heo H, Park SW (2016) Characteristics of optic disc rotation in myopic eyes. Ophthalmology 123(2):400–407

    Article  PubMed  Google Scholar 

  26. Avetisov E, Savitskaya N (1977) Some features of ocular microcirculation in myopia. Ann Ophthalmol 9(10):1261

    CAS  PubMed  Google Scholar 

  27. Kaneko Y, Moriyama M, Hirahara S, Ogura Y, Ohno-Matsui K (2014) Areas of nonperfusion in peripheral retina of eyes with pathologic myopia detected by ultra-widefield fluorescein angiography. Invest Ophthalmol Vis Sci 55(3):1432–1439

    Article  PubMed  Google Scholar 

  28. Leung CK-S, Mohamed S, Leung KS, Cheung CY-L, Chan SL-w, Cheng DK-y, Lee AK-c, Leung GY-o, Rao SK, Lam DSC (2006) Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci 47(12):5171–5176

    Article  PubMed  Google Scholar 

  29. Hoh S-T, Lim MC, Seah SK, Lim AT, Chew S-J, Foster PJ, Aung T (2006) Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology 113(5):773–777

    Article  PubMed  Google Scholar 

  30. Leung CK-S, Cheng ACK, Chong KKL, Leung KS, Mohamed S, Lau CSL, Cheung CYL, Chu GC-H, Lai RYK, Pang CCP (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48(7):3178–3183

    Article  PubMed  Google Scholar 

  31. Patton N, Maini R, MacGillivary T, Aslam TM, Deary IJ, Dhillon B (2005) Effect of axial length on retinal vascular network geometry. Am J Ophthalmol 140(4):648. e641–648. e647

    Article  Google Scholar 

  32. La Spina C, Corvi F, Bandello F, Querques G (2016) Static characteristics and dynamic functionality of retinal vessels in longer eyes with or without pathologic myopia. Graefe’s Arch Clin Exp Ophthalmol 254(5):827–834

    Article  Google Scholar 

  33. Laties AM (1967) Central retinal artery innervation: absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 77(3):405–409

    Article  CAS  PubMed  Google Scholar 

  34. Ye X, Laties A, Stone R (1990) Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 31(9):1731–1737

    CAS  PubMed  Google Scholar 

  35. Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31(5):377–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sung MS, Lee TH, Heo H, Park SW (2017) Clinical features of superficial and deep peripapillary microvascular density in healthy myopic eyes. PLoS ONE 12(10):e0187160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scoles D, Gray DC, Hunter JJ, Wolfe R, Gee BP, Geng Y, Masella BD, Libby RT, Russell S, Williams DR (2009) In-vivo imaging of retinal nerve fiber layer vasculature: imaging-histology comparison. BMC Ophthalmol 9(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mansoori T, Sivaswamy J, Gamalapati JS, Agraharam SG, Balakrishna N (2017) Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma 26(3):241–246

    Article  PubMed  Google Scholar 

  39. Schubert H (2009) Structure and function of the neural retina. In: Yanoff M, Duker JS (eds) Ophthalmology. Mosby, Philadelphia, pp 511–514

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2015R1D1A1A01059630) and the Bio and Medical Technology Development Program of the NRF funded by the Korean government (NRF-2017M3A9E8023019). The funding organizations had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Woo Park.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests to disclose regarding any material discussed in this article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Sung, M.S. & Park, S.W. Assessment of superficial retinal microvascular density in healthy myopia. Int Ophthalmol 39, 1861–1870 (2019). https://doi.org/10.1007/s10792-018-1014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-018-1014-z

Keywords

Navigation