Skip to main content

Advertisement

Log in

Ocular blood flow measurements in healthy human myopic eyes

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state.

Methods

The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N = 22, mean spherical equivalent (MSE) ≤−5.00D), low myopes (N = 22, MSE−1.00 to−4.50D) and emmetropes (N = 22, MSE ± 0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index were measured.

Results

When compared to the emmetropes and low myopes, the AL was greater in high myopia (p < 0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p = 0.004), higher peak systolic to end diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p = 0.014, p = 0.037). Compared to emmetropes, high myopes showed lower OBFamplitude (OBFa) (p = 0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p = 0.016, p = 0.036). MSE and AL correlated negatively with OBFa (p = 0.03, p = 0.003), OBF volume (p = 0.02, p < 0.001), POBF (p = 0.01, p < 0.001) and positively with CRA RI (p = 0.007, p = 0.05).

Conclusion

High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed in young healthy myopes is an early feature of the decrease in ocular blood flow reported in pathological myopia. Such vascular features would increase the susceptibility for vascular and age-related eye diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fitzgerald M, Wildsoet C, Anton R (2001) Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks. Exp Eye Res 74:561–570

    Article  Google Scholar 

  2. Troilo D, Nickla DL, Wildsoet CF (2000) Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest Ophthalmol Vis Sci 41:1249–1258

    CAS  PubMed  Google Scholar 

  3. Shih Y-F, Fitzgerald MEC, Norton TT, Gamlin PDR, Hodos W, Reiner A (1993) Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia. Curr Eye Res 3:219–227

    Article  Google Scholar 

  4. Hirata A, Negi A (1998) Lacquer crack lesions in experimental chick myopia. Graefes Arch Clin Exp Ophthalmol 236:138–145

    Article  CAS  PubMed  Google Scholar 

  5. Hirata A, Negi A (1998) Morphological changes of choriocapillaris in experimentally induced chick myopia. Graefes Arch Clin Exp Ophthalmol 236:132–137

    Article  CAS  PubMed  Google Scholar 

  6. Dimitrova G, Tamaki Y, Kato S, Nagahara M (2002) Retrobulbar circulation in myopic patients with or without myopic choroidal neovascularisation. Br J Ophthalmol 86:771–773

    Article  CAS  PubMed  Google Scholar 

  7. Akyol N, Kukner A, Ozdemir T, Esmerligil S (1996) Choroidal and retinal blood flow changes in degenerative myopia. Can J Ophthalmol 31:113–119

    CAS  PubMed  Google Scholar 

  8. Ravalico G, Pastori G, Croce M, Toffoli G (1997) Pulsatile ocular blood flow variations with axial length and refractive error. Ophthalmologica 211:271–273

    Article  CAS  PubMed  Google Scholar 

  9. Tano Y (2002) Pathologic myopia: where are we now? Am J Ophthalmol 134:645–660

    Article  PubMed  Google Scholar 

  10. Schumann J, Orgül S, Gugleta K, Dubler B, Flammer J (2000) Interocular difference in progression of glaucoma correlates with interocular differences in retrobulbar circulation. Am J Ophthalmol 129:728–733

    Article  CAS  PubMed  Google Scholar 

  11. Kaiser HJ, Schötzau A, Stümpfig D, Flammer J (1997) Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 123:320–327

    CAS  PubMed  Google Scholar 

  12. Lam A, Chan S, Chan B, Chan H (2003) The effect of axial length on ocular blood flow assessment in anisometropes. Ophthalmic Physiol Opt 23:315–320

    Article  PubMed  Google Scholar 

  13. Logan NS, Gilmartin B, Cox W (2002) Ocular Volume and Blood Flow. Invest Ophthalmol Vis Sci 43:ARVO E-Abstract 199

  14. Harris A, Harris M, Biller J, Garzozi H, Zarfty D, Ciulla TA, Martin B (2000) Aging affects the retrobulbar circulation differently in women and men. Arch Ophthalmol 118:1076–1080

    CAS  PubMed  Google Scholar 

  15. Yang Y, Hulbert M, Batterbury M, Clearkin L (1997) Pulsatile ocular blood flow measurements in healthy eyes: reproducibility and reference values. J Glaucoma 6:175–179

    Article  CAS  PubMed  Google Scholar 

  16. Domino EF, Minoshima S, Guthrie S, Ohl L, Ni L, Koeppe R, Zubieta JK (2000) Nicotine effects on regional cerebral blood flow in awake, resting tobacco smokers. Synapse 38:313–321

    Article  CAS  PubMed  Google Scholar 

  17. Gdovinova Z (2001) Blood flow velocity in the middle cerebral artery in heavy alcohol drinkers. Alcohol Alcohol 36:346–348

    CAS  PubMed  Google Scholar 

  18. Silver D, Geyer O (2000) Pressure-volume relation for the living human eye. Curr Eye Res 20:115–120

    CAS  PubMed  Google Scholar 

  19. Baxter G, Williamson T (1995) Colour Doppler Imaging of the eye: normal ranges, reproducibility and observer variation. J Ultrasound Med 14:91–96

    CAS  PubMed  Google Scholar 

  20. Michelson G, Schmauss B, Langhans M, Harazny J, Groh M (1996) Principle, validity, and reliability of scanning laser Doppler flowmetry. J Glaucoma 5:99–105

    CAS  PubMed  Google Scholar 

  21. Hosking S, Embleton S, Kagemann L, Chabra A, Jonescu-Cuypers C, Harris A (2001) Detector sensitivity influences blood flow sampling in scanning laser Doppler flowmetry. Graefes Arch Clin Exp Ophthalmol 239(6):407–410

    Article  CAS  PubMed  Google Scholar 

  22. Hosking S, Embleton S, Cunliffe I (2001) Application of a local search strategy improves the detection of blood flow deficits in the neuroretinal rim of glaucoma patients using scanning laser Doppler flowmetry. Br J Ophthalmol 85:1298–1302

    Article  CAS  PubMed  Google Scholar 

  23. Boothe WA, Lee DA, Panek WC, Pettit TH (1988) The tonopen: a manometric and clinical study. Arch Ophthalmol 106:1214–1247

    CAS  PubMed  Google Scholar 

  24. Logan NS, Davies LN, Mallen EA, Gilmartin B (2005) Ametropia and ocular biometry in a UK university student population. Optom Vis Sci 82:261–266

    Article  PubMed  Google Scholar 

  25. Saw SM, Chua WH, Gazzard G, Koh D, Tan D, Stone R (2005) Eye growth changes in myopic children in Singapore. Br J Ophthalmol 89:1489–1494

    Article  CAS  PubMed  Google Scholar 

  26. Tong L, Saw SM, Chua WH, Luu C, Cheng B, Yeo I, Wong E, Tan D, Koh A (2004) Optic disk and retinal characteristics in myopic children. Am J Ophthalmol 138:160–162

    Article  PubMed  Google Scholar 

  27. Zadnik K, Manny RE, Yu JA, Mitchell GL, Cotter SA, Quiralte JC, Shipp M, Friedman NE, Kleinstein RN, Walker TW, Jones LA, Moeschberger ML, Mutti DO (2003) Ocular component data in schoolchildren as a function of age and gender. Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group. Optom Vis Sci 80:226–236

    Article  PubMed  Google Scholar 

  28. Patton N, Maini R, MacGillivary T, Aslam TM, Deary IJ, Dhillon B (2005) Effect of axial length on retinal vascular network geometry. Am J Ophthalmol 140:641–648

    Google Scholar 

  29. Polska E, Kircher K, Ehrlich P, Vecsei P, Schmetterer L (2001) RI in central retinal artery as assessed by CDI does not correspond to retinal vascular resistance. Am J Physiol Heart Circ Physiol 280:1442–1447

    Google Scholar 

  30. Harris A, Ishii Y, Chung HS, Jonescu-Cuypers CP, McCranor LJ, Kagemann L, Garzozi HJ (2003) Blood flow per unit retinal nerve fibre tissue volume is lower in the human inferior retina. Br J Ophthalmol 87:184–188

    Article  CAS  PubMed  Google Scholar 

  31. Shimada N, Ohno-Matsui K, Harino S, Yoshida T, Yasuzumi K, Kojima A, Kobayashi K, Futagami S, Tokoro K, Mochizuki M (2004) Reduction of retinal blood flow in high myopia. Graefes Arch Clin Exp Ophthalmol 242:284–288

    Article  PubMed  Google Scholar 

  32. Hosking SL, Harris A, Chung HS, Jonescu-Cuypers CP, Kagemann L, Roff Hilton EJ, Garzozi H (2004) Ocular haemodynamic responses to induced hypercapnia and hyperoxia in glaucoma. Br J Ophthalmol 88:406–411

    Article  CAS  PubMed  Google Scholar 

  33. Jonescu-Cuypers CP, Harris A, Bartz-Schmidt KU, Kagemann L, Boros AS, Heimann UE, Lenz BH, Hilgers RD, Krieglstein GK (2004) Reproducibility of circadian retinal and optic nerve head blood flow measurements by Heidelberg retina flowmetry. Br J Ophthalmol 88:348–353

    Article  CAS  PubMed  Google Scholar 

  34. Zion IB, Harris A, Siesky B, Shulman S, McCranor L, Garzozi HJ (2007) Pulsatile ocular blood flow: relationship with flow velocities in vessels supplying the retina and choroid. Br J Ophthalmol 91:882–884

    Article  PubMed  Google Scholar 

  35. Mitchell P, Hourihan F, Sandbach J, Wang J (1999) The relationship between glaucoma and myopia. The Blue Mountains Eye Study. Ophthalmology 106:2010–2015

    Article  CAS  PubMed  Google Scholar 

  36. Gherghel D, Orgül S, Gugleta K, Gekkieva M, Flammer J (2000) Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol 130:597–605

    Article  CAS  PubMed  Google Scholar 

  37. Findl O, Rainer G, Dallinger S, Dorner G, Polak K, Kiss B, Georgopoulos M, Vass C, Schmetterer L (2000) Assessment of optic disk blood flow in patients with open-angle glaucoma. Am J Ophthalmol 130:589–596

    Article  CAS  PubMed  Google Scholar 

  38. Ehrlich R, Kheradiya NS, Winston DM, Moore DB, Wirostko B, Harris A (2009) Age-related ocular vascular changes. Graefes Arch Clin Exp Ophthalmol 247:583–591

    Article  PubMed  Google Scholar 

  39. Gilmartin B (2004) Myopia: precedents for research in the twenty-first century. Clin Exp Ophthalmol 32:305–324

    Article  Google Scholar 

  40. Nemeth J, Knezy K, Tapaszto B, Kovacs R, Harkanyi Z (2002) Different autoregulation response to dynamic exercise in ophthalmic and central retinal arteries: a color Doppler study in healthy subjects. Graefes Arch Clin Exp Ophthalmol 240:835–840

    Article  PubMed  Google Scholar 

  41. Riva C, Hero M, Titze P, Petrig B (1997) Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol 235:618–626

    Article  CAS  PubMed  Google Scholar 

  42. Roff E, Harris A, Sung-Chung H, Hosking S, Morrison A, Halter P, Jagemann L (1999) Comprehensive assessment of retinal, choroidal and retrobulbar haemodynamics during blood gas perturbation. Graefes Arch Clin Exp Ophthalmol 237:984–990

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Dheeraj Bansal for his invaluable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Benavente-Pérez.

Additional information

No financial relationship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benavente-Pérez, A., Hosking, S.L., Logan, N.S. et al. Ocular blood flow measurements in healthy human myopic eyes. Graefes Arch Clin Exp Ophthalmol 248, 1587–1594 (2010). https://doi.org/10.1007/s00417-010-1407-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1407-9

Keywords

Navigation