Skip to main content

Advertisement

Log in

Enhanced vitreous imaging optical coherence tomography in primary macular holes

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The aim of the current pilot study is to investigate the efficacy of a novel enhanced vitreous imaging (EVI) in primary macular holes (MHs) using a spectral-domain optical coherence tomography (SD-OCT). Thirty-four eyes of 32 consecutive patients with a MH were examined in one time cross-sectional study. The vitreomacular interface was assessed using SD-OCT with conventional and EVI technique. Twenty-three of the 34 eyes did not show a Weiss ring, and in 22 of those, we observed a MH with an open roof or operculum and a detached posterior vitreous cortex with conventional vitreous imaging. Using EVI-OCT, we visualized the reflection of the posterior vitreous with a vitreopapillary attachment. One of the 23 eyes without a Weiss ring had a central round retinal defect without an operculum, and the conventional SD-OCT showed an empty vitreous, suggesting a complete posterior vitreous detachment. However, the EVI-OCT revealed the reflection of the posterior vitreous, and the cortex appeared to still be completely attached. In all the 23 eyes without a Weiss ring, EVI-OCT detected the reflection of the posterior vitreous and vitreopapillary attachment. In all 11 eyes with a Weiss ring (stage 4 hole), EVI-OCT showed an optically empty space in the posterior vitreous cavity without a vitreopapillary attachment. EVI-OCT may be a new reliable method for preoperative evaluations to determine the presence or absence of a complete posterior vitreous detachment in macular diseases with an indistinct Weiss ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gass JDM (1995) Reappraisal of biomicroscopic classification of stages of development of a macular hole. Am J Ophthalmol 119:752–759

    Article  CAS  PubMed  Google Scholar 

  2. Gaudric A, Haouchine B, Massin P, Paques M, Blain P, Erginay A (1999) Macular hole formation: new data provided by optical coherence tomography. Arch Ophthalmol 117:744–751

    Article  CAS  PubMed  Google Scholar 

  3. Duker JS, Kaiser PK, Binder S et al (2013) The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:2611–2619

    Article  PubMed  Google Scholar 

  4. Takahashi A, Yoshida A, Nagaoka T et al (2012) Idiopathic full-thickness macular holes and the vitreomacular interface: a high-resolution spectral-domain optical coherence tomography study. Am J Ophthalmol 154:881–892

    Article  PubMed  Google Scholar 

  5. Pang CE, Freund KB, Engelbert M (2014) Enhanced vitreous imaging technique with spectral-domain optical coherence tomography for evaluation of posterior vitreous detachment. JAMA Ophthalmol 132:1148–1150

    Article  PubMed  Google Scholar 

  6. Itakura H, Kishi S (2011) Aging changes of vitreomacular interface. Retina 31:1400–1404

    Article  PubMed  Google Scholar 

  7. Kishi S, Takahashi H (2000) Three-dimensional observations of developing macular holes. Am J Ophthalmol 130:65–75

    Article  CAS  PubMed  Google Scholar 

  8. Johnson MW, Van Newkirk MR, Meyer KA (2001) Perifoveal vitreous detachment is the primary pathogenic event in idiopathic macular hole formation. Arch Ophthalmol 119:215–222

    CAS  PubMed  Google Scholar 

  9. Takahashi A, Nagaoka T, Ishiko S, Kameyama D, Yoshida A (2010) Foveal anatomic changes in a progressing stage 1 macular hole documented by spectral domain optical coherence tomography. Ophthalmology 117:806–810

    Article  PubMed  Google Scholar 

  10. Takahashi A, Nagaoka T, Yoshida A (2011) Stage 1-A macular hole: a prospective spectral-domain optical coherence tomography study. Retina 31:127–147

    Article  PubMed  Google Scholar 

  11. Privat E, Tadayoni R, Gaucher D, Haouchine B, Massin P, Gaudric A (2007) Residual defect in the foveal photoreceptor layer detected by optical coherence tomography in eyes with spontaneously closed macular holes. Am J Ophthalmol 143:814–819

    Article  PubMed  Google Scholar 

  12. Guillaubey A, Malvitte L, Lafontaine PO et al (2007) Incidence of retinal detachment after macular surgery: a retrospective study of 634 cases. Br J Ophthalmol 91:1327–1330

    Article  PubMed  PubMed Central  Google Scholar 

  13. Akiba J, Ishiko S, Yoshida A (2001) Variations of Weiss’s ring. Retina 21:243–246

    Article  CAS  PubMed  Google Scholar 

  14. Kakehashi A, Inoda S, Shimizu Y, Makino S, Shimizu H (1998) Predictive value of floaters in the diagnosis of posterior vitreous detachment. Am J Ophthalmol 125:113–115

    Article  CAS  PubMed  Google Scholar 

  15. Kakehashi A, Takezawa M, Akiba J (2014) Classification of posterior vitreous detachment. Clin Ophthalmol 8:1–10. doi:10.2147/OPTH.S54021

    PubMed  PubMed Central  Google Scholar 

  16. Ueda-Arakawa N, Ooto S, Ellabban AA et al (2014) Macular choroidal thickness and volume of eyes with reticular pseudodrusen using swept-source optical coherence tomography. Am J Ophthalmol 157:994–1004

    Article  PubMed  Google Scholar 

  17. Adhi M, Liu JJ, Qavi AH et al (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157:1272–1281

    Article  PubMed  Google Scholar 

  18. Liu JJ, Witkin AJ, Adhi M et al (2014) Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography. PLoS One. doi:10.1371/journal.pone.0102950.2014.07.18

    Google Scholar 

  19. Barteselli G, Bartsch DU, El-Emam S et al (2013) Combined depth imaging technique on spectral-domain optical coherence tomography. Am J Ophthalmol 155:727–732

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ip MS, Baker BJ, Duker JS et al (2002) Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography. Arch Ophthalmol 120:29–35

    Article  PubMed  Google Scholar 

  21. Ullrich S, Haritoglou C, Gass C, Schaumberger M, Ulbig MW, Kampik A (2002) Macular hole size as a prognostic factor in macular hole surgery. Br J Ophthalmol 86:390–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruiz-Moreno JM, Staicu C, Piñero DP, Montero J, Lugo F, Amat P (2008) Optical coherence tomography predictive factors for macular hole surgery outcome. Br J Ophthalmol 92:640–644

    Article  CAS  PubMed  Google Scholar 

  23. Gupta B, Laidlaw DA, Williamson TH, Shah SP, Wong R, Wren S (2009) Predicting visual success in macular hole surgery. Br J Ophthalmol 93:1488–1491

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takahashi.

Ethics declarations

Conflict of interest

The authors report no financial support or financial conflict of interest.

Ethical approval

The current study followed the tenets of the Declaration of Helsinki, and the Institutional Review Board of Asahikawa Medical University approved the prospective study design. The nature of the study, participation in its research, and its possible consequences were explained to the patient, after which the patient provided informed consent.

Additional information

The authors have no proprietary or commercial interest in any materials discussed in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, A., Nagaoka, T. & Yoshida, A. Enhanced vitreous imaging optical coherence tomography in primary macular holes. Int Ophthalmol 36, 355–363 (2016). https://doi.org/10.1007/s10792-015-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-015-0126-y

Keywords

Navigation