Skip to main content
Log in

Efficacy analysis of hydroxychloroquine therapy in systemic lupus erythematosus: a study on disease activity and immunological biomarkers

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Background

Hydroxychloroquine (HCQ) is a widely prescribed medication to patients with systemic lupus erythematosus (SLE), with potential anti-inflammatory effects. This study was performed to investigate the efficacy of HCQ therapy by serial assessment of disease activity and serum levels of proinflammatory cytokines in SLE patients.

Methods

In this prospective cohort study, 41 newly diagnosed SLE patients receiving 400 mg HCQ per day were included. Patients requiring statins and immunosuppressive drugs except prednisolone at doses lower than 10 mg/day were excluded. Outcome measures were assessed before commencement of HCQ therapy (baseline visit) as well as in two follow-up visits (1 and 2 months after beginning the HCQ therapy). Serum samples of 41 age-matched healthy donors were used as controls.

Results

Median levels of IL-1β (p < 0.001), IL-6 (p = 0.001), and TNF-α (p < 0.001) were significantly higher, whereas, median CH50 level was significantly lower (p < 0.001) in SLE patients compared with controls. Two-month treatment with HCQ resulted in significant decrease in SLEDAI-2K (p < 0.001), anti-dsDNA (p < 0.001), IL-1β (p = 0.003), IL-6 (p < 0.001) and TNF-α (p < 0.001) and a significant increase in CH50 levels (p = 0.012). The reductions in SLEDAI-2K and serum levels of IL-1β and TNF-α were significantly greater in the first month compared with the reductions in the second month.

Conclusion

HCQ therapy is effective on clinical improvement of SLE patients through interfering with inflammatory signaling pathways, reducing anti-DNA autoantibodies and normalizing the complement activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akhavan PS, Su J, Lou W, Gladman DD, Urowitz MB, Fortin PR (2013) The early protective effect of hydroxychloroquine on the risk of cumulative damage in patients with systemic lupus erythematosus. J Rheumatol 40:831–841

    Article  CAS  PubMed  Google Scholar 

  • Aringer M, Smolen J (2008) The role of tumor necrosis factor-alpha in systemic lupus erythematosus. Arthritis Res Ther 10:202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arora V, Verma J, Marwah V, Kumar A, Anand D, Das N (2012) Cytokine imbalance in systemic lupus erythematosus: a study on northern Indian subjects. Lupus 21:596–603

    Article  CAS  PubMed  Google Scholar 

  • Aviña-Zubieta JA, Esdaile JM (2012) Antimalarial Medications. In: Wallace DJ, Hahn BH (eds) Dubois’ lupus erythematosus and related syndromes, 8th edn. Saunders, Elsevier, Philadelphia, pp 601–608

    Google Scholar 

  • Cairoli E, Rebella M, Danese N, Garra V, Borba EF (2012) Hydroxychloroquine reduces low-density lipoprotein cholesterol levels in systemic lupus erythematosus: a longitudinal evaluation of the lipid-lowering effect. Lupus 21:1178–1182

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Mumtaz IM, Khodadadi L, Radbruch A, Hoyer BF, Hiepe F (2013) Autoantibodies from long-lived ‘memory’ plasma cells of NZB/W mice drive immune complex nephritis. Ann Rheum Dis 72:2011–2017

    Article  CAS  PubMed  Google Scholar 

  • Costabile M (2010) Measuring the 50% haemolytic complement (CH50) activity of serum. J Vis Exp. https://doi.org/10.3791/1923

    Article  PubMed  PubMed Central  Google Scholar 

  • Danis VA, Rathjen DA, Brooks PM (1992) The effect of slow acting antirheumatic drugs on the production of cytokines by human monocytes. Inflammopharmacology 1:315–327

    Article  CAS  Google Scholar 

  • Dörner T, Giesecke C, Lipsky PE (2011) Mechanisms of B cell autoimmunity in SLE. Arthritis Res Ther 13:243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Durcan L, Petri M (2016) Immunomodulators in SLE: clinical evidence and immunologic actions. J Autoimmun 74:73–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eilertsen GØ, Nikolaisen C, Becker-Merok A, Nossent JC (2011) Interleukin-6 promotes arthritis and joint deformation in patients with systemic lupus erythematosus. Lupus 20:607–613

    Article  CAS  PubMed  Google Scholar 

  • Ferraccioli G, Houssiau FA (2013) Which B-cell subset should we target in lupus? Ann Rheum Dis 72:1891–1892

    Article  CAS  PubMed  Google Scholar 

  • Fox RI, Kang HI (1993) Mechanism of action of antimalarial drugs: inhibition of antigen processing and presentation. Lupus 2(Suppl 1):S9–S12

    PubMed  CAS  Google Scholar 

  • Gabay C, Cakir N, Moral F, Roux-Lombard P, Meyer O, Dayer JM, Vischer T, Yazici H, Guerne PA (1997) Circulating levels of tumor necrosis factor soluble receptors in systemic lupus erythematosus are significantly higher than in other rheumatic diseases and correlate with disease activity. J Rheumatol 24:303–308

    PubMed  CAS  Google Scholar 

  • Gladman DD, Ibañez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29:288–291

    PubMed  Google Scholar 

  • Hsieh SC, Sun KH, Tsai CY, Tsai YY, Tsai ST, Huang DF, Han SH, Yu HS, Yu CL (2001) Monoclonal anti-double stranded DNA antibody is a leucocyte-binding protein to up-regulate interleukin-8 gene expression and elicit apoptosis of normal human polymorphonuclear neutrophils. Rheumatology (Oxford) 40:851–858

    Article  CAS  Google Scholar 

  • Illei GG, Tackey E, Lapteva L, Lipsky PE (2004) Biomarkers in systemic lupus erythematosus: II. Markers of disease activity. Arthritis Rheum 50:2048–2065

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Bobba R, Su J, Shariati-Sarabi Z, Gladman DD, Urowitz M, Lou W, Fortin PR (2010) The protective effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. Arthritis Rheum 62:863–868

    Article  CAS  PubMed  Google Scholar 

  • Koenig KF, Groeschl I, Pesickova SS, Tesar V, Eisenberger U, Trendelenburg M (2012) Serum cytokine profile in patients with active lupus nephritis. Cytokine 60:410–416

    Article  CAS  PubMed  Google Scholar 

  • Leffler J, Bengtsson AA, Blom AM (2014) The complement system in systemic lupus erythematosus: an update. Ann Rheum Dis 73:1601–1606

    Article  CAS  PubMed  Google Scholar 

  • Lenert PS (2006) Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus. Arthritis Res Ther 8:203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manukyan G, Ghazaryan K, Ktsoyan Z, Khachatryan Z, Kelly D, Tatyan M, Agababova M, Aminov R (2010) Comparative analysis of cytokine profiles in autoinflammatory and autoimmune conditions. Cytokine 50:146–151

    Article  CAS  PubMed  Google Scholar 

  • Monteith AJ, Kang S, Scott E, Hillman K, Rajfur Z, Jacobson K, Costello MJ, Vilen BJ (2016) Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc Natl Acad Sci USA 113:E2142–E2151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller-Calleja N, Manukyan D, Canisius A, Strand D, Lackner KJ (2017) Hydroxychloroquine inhibits proinflammatory signalling pathways by targeting endosomal NADPH oxidase. Ann Rheum Dis 76:891–897

    Article  CAS  PubMed  Google Scholar 

  • Pacheco Y, Barahona-Correa J, Monsalve DM, Acosta-Ampudia Y, Rojas M, Rodríguez Y, Saavedra J, Rodríguez-Jiménez M, Mantilla RD, Ramírez-Santana C, Molano-González N, Anaya JM (2017) Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. J Transl Med 15:239

    Article  PubMed Central  PubMed  Google Scholar 

  • Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, Bruce IN, Isenberg D, Wallace DJ, Nived O, Sturfelt G, Ramsey-Goldman R, Bae SC, Hanly JG, Sánchez-Guerrero J, Clarke A, Aranow C, Manzi S, Urowitz M, Gladman D, Kalunian K, Costner M, Werth VP, Zoma A, Bernatsky S, Ruiz-Irastorza G, Khamashta MA, Jacobsen S, Buyon JP, Maddison P, Dooley MA, van Vollenhoven RF, Ginzler E, Stoll T, Peschken C, Jorizzo JL, Callen JP, Lim SS, Fessler BJ, Inanc M, Kamen DL, Rahman A, Steinsson K, Franks AG Jr, Sigler L, Hameed S, Fang H, Pham N, Brey R, Weisman MH, McGwin G Jr, Magder LS (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64:2677–2686

    Article  PubMed Central  PubMed  Google Scholar 

  • Ponticelli C, Moroni G (2017) Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf 16:411–419

    Article  CAS  PubMed  Google Scholar 

  • Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF (2015) Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 23:231–269

    Article  CAS  PubMed  Google Scholar 

  • Raley MJ, Schwacha MG, Loegering DJ (1997) Lysosomotropic agents ameliorate macrophage dysfunction following the phagocytosis of IgG-coated erythrocytes: a role for lipid peroxidation. Inflammation 21:619–628

    Article  CAS  PubMed  Google Scholar 

  • Ripley BJ, Goncalves B, Isenberg DA, Latchman DS, Rahman A (2005) Raised levels of interleukin 6 in systemic lupus erythematosus correlate with anaemia. Ann Rheum Dis 64:849–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA (2010) Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 69:20–28

    Article  CAS  PubMed  Google Scholar 

  • Sabry A, Sheashaa H, El-Husseini A, Mahmoud K, Eldahshan KF, George SK, Abdel-Khalek E, El-Shafey EM, Abo-Zenah H (2006) Proinflammatory cytokines (TNF-alpha and IL-6) in Egyptian patients with SLE: its correlation with disease activity. Cytokine 35:148–153

    Article  CAS  PubMed  Google Scholar 

  • Segal R, Dayan M, Zinger H, Mozes E (2001) Suppression of experimental systemic lupus erythematosus (SLE) in mice via TNF inhibition by an anti-TNFalpha monoclonal antibody and by pentoxiphylline. Lupus 10:23–31

    Article  CAS  PubMed  Google Scholar 

  • Shariati-Sarabi Z, Monzavi SM, Ranjbar A, Esmaily H, Etemadrezaie H (2013a) High disease activity is associated with high disease damage in an Iranian inception cohort of patients with lupus nephritis. Clin Exp Rheumatol 31:69–75

    PubMed  Google Scholar 

  • Shariati-Sarabi Z, Ranjbar A, Monzavi SM, Esmaily H, Farzadnia M, Zeraati AA (2013b) Analysis of clinicopathologic correlations in Iranian patients with lupus nephritis. Int J Rheum Dis 16:731–738

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Mariz HA, Rocha LF Jr, Oliveira PS, Dantas AT, Duarte AL, Pitta Ida R, Galdino SL, Pitta MG (2013) Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics (Sao Paulo) 68:766–771

    Article  Google Scholar 

  • Spronk PE, Limburg PC, Kallenberg CG (1995) Serological markers of disease activity in systemic lupus erythematosus. Lupus 4:86–94

    Article  CAS  PubMed  Google Scholar 

  • Studnicka-Benke A, Steiner G, Petera P, Smolen J (1996) Tumour necrosis factor alpha and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Br J Rheumatol 35:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Su X, Zhou T, Yang P, Edwards CK, Mountz JD (1998) Reduction of arthritis and pneumonitis in motheaten mice by soluble tumor necrosis factor receptor. Arthritis Rheum 41:139–149

    Article  CAS  PubMed  Google Scholar 

  • Sun KH, Yu CL, Tang SJ, Sun GH (2000) Monoclonal anti-double-stranded DNA autoantibody stimulates the expression and release of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha from normal human mononuclear cells involving in the lupus pathogenesis. Immunology 99:352–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tackey E, Lipsky PE, Illei GG (2004) Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 13:339–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talaat RM, Mohamed SF, Bassyouni IH, Raouf AA (2015) Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine 72:146–153

    Article  CAS  PubMed  Google Scholar 

  • Tunnicliffe DJ, Singh-Grewal D, Kim S, Craig JC, Tong A (2015) Diagnosis, monitoring, and treatment of systemic lupus erythematosus: a systematic review of clinical practice guidelines. Arthritis Care Res (Hoboken) 67:1440–1452

    Article  Google Scholar 

  • Umare V, Pradhan V, Nadkar M, Rajadhyaksha A, Patwardhan M, Ghosh KK, Nadkarni AH (2014) Effect of proinflammatory cytokines (IL-6, TNF-α, and IL-1β) on clinical manifestations in Indian SLE patients. Mediators Inflamm 2014:385297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL (1997) Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol 24:55–60

    PubMed  Google Scholar 

  • van Loosdregt J, Spreafico R, Rossetti M, Prakken BJ, Lotz M, Albani S (2013) Hydroxychloroquine preferentially induces apoptosis of CD45RO + effector T cells by inhibiting autophagy: a possible mechanism for therapeutic modulation of T cells. J Allergy Clin Immunol 131:1443–1446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willis R, Seif AM, McGwin G Jr, Martinez-Martinez LA, González EB, Dang N, Papalardo E, Liu J, Vilá LM, Reveille JD, Alarcón GS, Pierangeli SS (2012) Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: data from LUMINA (LXXV), a multiethnic US cohort. Lupus 21:830–835

    Article  CAS  PubMed  Google Scholar 

  • Willis R, Smikle M, DeCeulaer K, Romay-Penabad Z, Papalardo E, Jajoria P, Harper B, Murthy V, Petri M, Gonzalez EB (2017) Clinical associations of proinflammatory cytokines, oxidative biomarkers and vitamin D levels in systemic lupus erythematosus. Lupus 26:1517–1527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wozniacka A, Carter A, McCauliffe DP (2002) Antimalarials in cutaneous lupus erythematosus: mechanisms of therapeutic benefit. Lupus 11:71–81

    Article  CAS  PubMed  Google Scholar 

  • Wozniacka A, Lesiak A, Narbutt J, McCauliffe DP, Sysa-Jedrzejowska A (2006) Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus 15:268–275

    Article  CAS  PubMed  Google Scholar 

  • Zharkova O, Celhar T, Cravens PD, Satterthwaite AB, Fairhurst AM, Davis LS (2017) Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford) 56(suppl_1):i55–i66

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank vice chancellor for research of Mashhad University of Medical Sciences who kindly supported this study. The authors would also like to acknowledge Dr. K. Hashemzadeh and the staff of the department of internal medicine, Imam Reza Hospital, for their kind assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aida Alirezaei or Zhaleh Shariati-Sarabi.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monzavi, S.M., Alirezaei, A., Shariati-Sarabi, Z. et al. Efficacy analysis of hydroxychloroquine therapy in systemic lupus erythematosus: a study on disease activity and immunological biomarkers. Inflammopharmacol 26, 1175–1182 (2018). https://doi.org/10.1007/s10787-018-0512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0512-y

Keywords

Navigation