Skip to main content
Log in

Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

We evaluate the anti-inflammatory and antialgic potency of a nanoemulsion (NEORO) containing the essential oil of Rosmarinus officinalis L. (EORO), which is composed primarily of limonene, camphor and 1,8-cineole. The EORO and NEORO were administered orally 30 min prior to starting the experiments. In a test of rat paw oedema induced by carrageenan, NEORO was effective in doses of 498 µg/kg, and it inhibited 46% of the maximum peak of the oedema; in a dose of 300 mg/kg, EORO inhibited 50% of the maximum peak of the oedema. In an acetic acid-induced writhing test, NEORO yielded a dose-dependent effect, and a dose of 830 µg/kg inhibited 84% of the algesic process; a dose of 100 mg/kg of EORO inhibited 55%. In an assay for H2S production in rat stomachs, a dose of 498 µg/kg of NEORO inhibited H2S production in all of the measurement phases, and a dose of 100 mg/kg EORO inhibited 60% and influenced the effect of the ethanol significantly, reducing the production of H2S. We suggest that NEORO potentiated the effect of EORO, demonstrating effectiveness in doses 600 times lower than those applied with EORO. Among the major compounds of EORO, the camphor molecule exhibited the largest number of interactions with the therapeutic targets related to the inflammatory process, suggesting that it is responsible for EORO’s anti-inflammatory and antialgic effects. This work paves the way for future investigations related to the therapeutic role of NEORO in the inflammation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • American Veterinary Medical Association (2013) Guidelines for the Euthanasia of Animals: 2013 Edition. 48–50

  • Assis LM, Zavareze ER, Prentice-Hernández C, Souza-Soares LA (2012) Characteristics of nanoparticles and their potential applications in foods. Braz J Food Technol 15:99–109

    Article  Google Scholar 

  • Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53(14):5061–5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boix YF, Victório CP, Lage CLS, Kuster RM (2010) Volatile compounds from Rosmarinus officinalis L. and Baccharis dracunculifolia DC. Growing in southeast coast of Brazil. Quím Nova 33:255–257

    Article  CAS  Google Scholar 

  • Brumfiel G (2006) Consumer products leap aboard the nano bandwagon. Nature 440:262

    Article  CAS  PubMed  Google Scholar 

  • Chandak N, Kumar P, Kaushik P, Varshney P, Sharma C, Kaushik D, Jain S, Aneja KR, Sharma PK (2014) Dual evaluation of some novel 2-amino-substituted coumarinylthiazoles as anti-inflammatory–antimicrobial agents and their docking studies with COX-1/COX-2 active sites. J Enzym Inhib Med Chem 29:476–484

    Article  CAS  Google Scholar 

  • Cleff MB, Meinerz ARM, Madrid I, Fonseca AO, Alves GH, Meireles MCA, Rodrigues MRA (2012) Perfil de suscetibilidade de leveduras do gênero Candida isoladas de animais ao óleo essencial de Rosmarinus officinalis L. Rev Bras Planta Med Botucatu 14(1):43–49

    Article  CAS  Google Scholar 

  • Cole JC, Nissink JWM, Taylor R (2005) Protein-ligand docking and virtual screening with GOLD. In: Alvarez J, Shoichet B (eds) Virtual Screening in Drug Discovery. CRC Press, Boca Raton, Fla, pp 379–415

  • De Faria LRD, Lima CS, Perazzo FF, Carvalho JCT (2011) Anti-inflammatory and antinociceptive activities of the essential oil from Rosmarinus officinalis L. (Lamiaceae). Int J Pharm Sci Rev Res 7:2

    Google Scholar 

  • De Villiers MN, Aramwit P, Kwon GS (eds) (2009) Nanotechnology in drug delivery. Springer & AAPS Press, NY, p 663p

    Google Scholar 

  • Du J, Yu Y, Ke Y, Wang C, Zhu L, Qian ZM (2007) Ligustilide attenuates pain behavior induced by acetic acid or formalin. J Ethnopharmacol 112:211–214

    Article  CAS  PubMed  Google Scholar 

  • Duarte JL, Amado JRR, Oliveira AEMFM, Cruz RAS, Ferreira AM, Souto RNP, Falcão DQ, Carvalho JCT, Fernandes CP (2015) Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev Bras Farmacogn 25:189–189

    Article  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  PubMed  Google Scholar 

  • Eto K, Kimura H (2002) A novel enhancing mechanism for hydrogen sulfide-producing activity of cystathionine beta-synthase. J Biol Chem 277:42680–42685

    Article  CAS  PubMed  Google Scholar 

  • Falcão AP, Chaves ES, Kuskoski EM, Fett R, Falcão DL, Bordignon-Luiz T (2007) Índice de polifenóis, antocianinas totais e atividade antioxidante de um sistema modelo de geléia de uvas. Ciênc Tecnol Aliment 27:637–642

    Article  Google Scholar 

  • Fares M, Said MA, Alsherbiny MA, Eladwy RA, Almahli H, Abdel-Aziz MM, Ghabbour HA, Eldehna WM, Abdel-Aziz HA (2016) Synthesis, biological evaluation and molecular docking of certain sulfones as potential nonazole antifungal agents. Molecules 21:1–16

    Article  Google Scholar 

  • Fernandes CP, Mascarenhas MP, Zibetti FM, Lima BG, Oliveira RPRF, Rocha L, Falcão DQ (2013) HLB value, an important parameter for the development of essential oil phytopharmaceuticals. Braz J Pharm 23(1):108–114

    Article  CAS  Google Scholar 

  • Fiorucci S, Antonelli E, Distrutti E, Rizzo G, Mencarelli A, Orlandi S, Zanardo R, Renga B, Di Sante M, Morelli A, Cirino G, Wallace JL (2005) Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129(4):1210–1224

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Distrutti E, Cirino G, Wallace JL (2006) The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 131:259–271

    Article  CAS  PubMed  Google Scholar 

  • Ganguly A, Al Mahmud Z, Muhammad Nasir Uddin M, Abdur Rahman SM (2013) In-vivo anti-inflammatory and anti-pyretic activities of Manilkara zapota leaves in albino Wistar rats. Asian Pac J Trop Dis 3(4):301–307

    Article  PubMed Central  Google Scholar 

  • Gauch LMR, Silveira-Gomes F, Esteves RA, Pedrosa SS, Gurgel ESC, Arruda AC, Marques-Da-Silva SH (2014) Effects of Rosmarinus officinalis essential oil on germ tube formation by Candida albicans isolated from denture wearers. Rev Soc Brasil Med Trop 47(3):389–391

    Article  Google Scholar 

  • Irache JM, Esparza I, Gamazo C, Agüeros M, Espuelas S (2011) Nanomedicine: novel approaches in human and veterinary therapeutics. Vet Parasitol 180:47–71

    Article  PubMed  Google Scholar 

  • Izquierdo P, Esquena J, Tadros TF, Dederen C, Garcia MJ, Azemar N, Solans C (2002) Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18:26–30

    Article  CAS  Google Scholar 

  • Juerges UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H (2003) Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 97:250–256

    Article  Google Scholar 

  • Khan SU, Morris GF, Hidiroglou M (1980) Rapid estimation of sulfide in rumen and blood with a sulfide-specific ion electrode. Microchem J 25:388–395

    Article  CAS  Google Scholar 

  • Koster R, Anderson M, De Beer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412–418

    Google Scholar 

  • Kuang X, Yao Y, Du JR, Liu YX, Wang CY, Qian ZM (2006) Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice. Brain Res 1102:145–153

    Article  CAS  PubMed  Google Scholar 

  • Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK (2007) Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 42:706–719

    Article  PubMed  Google Scholar 

  • Li YC, Chiang CW, Yeh HC, Hsu PY, Whitby FG, Wang LH, Chan NL (2008) Structures of prostacyclin synthase and its complexes with substrate analog and inhibitor reveal a ligand-specific heme conformation change. J Biol Chem 283:2917–2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzi HE, Matos FJA (2002) Plantas medicinais no Brasil: Nativas e exóticas. Instituto Plantarum de Estudos de Flora, Nova Odessa, p 512

    Google Scholar 

  • Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio LEB, Oliveira A, Pazini FL, Dalmarco JB, Simionatto EL, Pizzolatti MG, Rodrigues ALS (2013) Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem 136:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Marchiori VF (2004) Rosmarinus officinalis. Monografia (Curso de Fitomedicina). Associação Argentina de Fitomedicina, Argentina, Fundação Herbarium, p 32

    Google Scholar 

  • Martínez AL, González-Trujano ME, Pellicer F, López-Muñoz FJ, Navarrete A (2009) Antinociceptive effect and GC/MS analysis of Rosmarinus officinalis L. essential oil from its Aerial parts. Planta Med 75:508–511

    Article  PubMed  Google Scholar 

  • McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729

    Article  CAS  Google Scholar 

  • Melo GAN, Grespan R, Fonseca JP, Farinha TO, Silva EL, Romero AL, Bersani A, Cuman RK (2011) Rosmarinus officinalis L. essential oil inhibits in vivo and in vitro leukocyte migration. J Med Food 14(9):944–949

    Article  Google Scholar 

  • Napoli EM, Siracusa L, Saija A, Speciale A, Trombetta D, Tuttolomondo T, La Bella S, Licata M, Virga G, Leone R, Leto C, Rubino L, Ruberto G (2015) Wild Sicilian rosemary: phytochemical and morphological screening and antioxidant activity evaluation of extracts and essential oils. Chem Biodivers 12:1075–1094

    Article  CAS  PubMed  Google Scholar 

  • Ojeda-Sana AM, Van Baren CM, Elechosa MA, Juarez MA, Moreno S (2013) New insights into antibacterial and antioxidant activities of Rosemary essential oil and their main components. Food Control 31:189–195

    Article  CAS  Google Scholar 

  • Orafidiya LO, Oladimeji FA (2002) Determination of the required HLB values of some essential oils. Int J Pharm 237:241–249

    Article  CAS  PubMed  Google Scholar 

  • Orlando BJ, Malkowski MG (2016) Substrate-selective inhibition of cyclooxygenase-2 by fenamic acid derivatives is dependent on peroxide tone. J Biol Chem 291:15069–15081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostertag F, Weiss J, McClements DJ (2012) Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. J Colloid Interface Sci 388:95–112

    Article  CAS  PubMed  Google Scholar 

  • Patel AR, Velikov KP (2011) Colloidal delivery systems in foods: a general comparison with oral drug delivery LWT. Food Sci Technol 44:1958–1964

    CAS  Google Scholar 

  • Patgiri B, Umretia BL, Vaishnav PU, Prajapati PK, Shukla VJ, Ravishankar B (2014) Anti-inflammatory activity of Guduchi Ghana (aqueous extract of Tinospora cordifolia Miers.). Int Q J Res Ayurveda 35:108–110

    Article  Google Scholar 

  • Rašković A, Milanović I, Pavlović N, Ćebović T, Vukmirović S, Mikov M (2014) Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement Altern Med 14:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Raut JS, Karuppayil SM (2010) A status on the medicinal properties of essential oils. Ind Crops Products 62:250–264

    Article  Google Scholar 

  • Ribeiro DS, Melo DB, Guimarães AG, Velozo ES (2012) Avaliação do óleo essencial de alecrim (Rosmarinus officinalis L.) como modulador da resistência bacteriana. Semina: Ciências Agrárias 33:687–696

    CAS  Google Scholar 

  • Sandy M, Butler A (2009) Microbial Iron Acquisition: marine and Terrestrial Siderophores. Chem Rev 109:4580–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10:102–110

    Article  CAS  Google Scholar 

  • Solè I, Solans C, Maestro A, González C, Gutiérrez JM (2012) Study of nano-emulsion formation by dilution of microemulsions. J Colloid Interface Sci 376:133–139

    Article  PubMed  Google Scholar 

  • Souza MT, Almeida JR, Araujo AA, Duarte MC, Gelain DP, Moreira JC, dos Santos MR, Quintas-Júnior LJ (2014) Structure–activity relationship of terpenes with anti-inflammatory profile—a systematic review. Basic Clin Pharmacol Toxicol 115:244–256

    Article  PubMed  Google Scholar 

  • Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    Article  PubMed  Google Scholar 

  • Ventura-Martinez R, Rivero-Osorno O, Gómez C, González-Trujano ME (2011) Spasmolytic activity of Rosmarinus officinalis L. involves calcium channels in the guinea pig ileum. J Ethnopharmacol 137:1528–1532

    Article  CAS  PubMed  Google Scholar 

  • Wallace JL (2007) Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol Sci 28:10

    Article  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    Article  CAS  PubMed  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soci Exp Biol Med 111:544–547

    Article  CAS  Google Scholar 

  • Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Du JR, Wang CY, Qian ZM (2008) Protection against hydrogen peroxide-induced injury by Z-ligustilide in PC12 cells. Exp Brain Res 184(3):307–312

    Article  CAS  PubMed  Google Scholar 

  • Zaouali Y, Bouzaine T, Boussaid M (2010) Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem Toxicol 48:3144–3152

    Article  CAS  PubMed  Google Scholar 

  • Ziólkowski M, Grabowski SJ, Leszczynski J (2006) Cooperativity in hydrogen-bonded interactions: Ab initio and “atoms in molecules” analyses. J Phys Chem A 110(20):6514–6521

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge PNPD/CAPES (Program/Project: PNPD20130076-14001012005P1), CAPES (No. 3292/2013 AUXPE) and CNPq Proc. 402332/2013-0 for financial support and the Universidad Autônoma de México—Programa de Estancias de Investigación (PREI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaelle Sousa Borges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, R.S., Lima, E.S., Keita, H. et al. Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacol 26, 183–195 (2018). https://doi.org/10.1007/s10787-017-0374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0374-8

Keywords

Navigation