Skip to main content
Log in

Locking Phenomenon in Computational Methods of the Shell Theory

  • Published:
International Applied Mechanics Aims and scope

The causes of computational locking in the shell theory are analyzed. The general cause of the phenomenon is shown to be rooted in variations calculus and related to the relationship between variable functions. As exemplified by a numerical case, the convergence may depend on the type of load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Yu. Abrosov, V. A. Maksymiuk, and V. S. Tarasiuk, “Straining long thin cylindrical shell with an elliptic cross section,” Visn. Zaporiz. Nats. Univ., Fiz.-Mat. Nauky, 2, 5–10 (2015).

    Google Scholar 

  2. À. I. Golovanov, O. N. Tyuleneva, and A. F. Shigabutdinov, Finite-Element Method in Statics and Dynamics of Thin-Wall Structures [in Russian], Fizmatizdat, Moscow (2006).

  3. Yu. Yu. Abrosov, V. A. Maksimyuk, and I. S. Chernyshenko, “Influence of cross-sectional ellipticity on the deformation of a long cylindrical shell,” Int. Appl. Mech., 52, No. 5, 529–534 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  4. K.-J. Bathe and D.-N. Kim, “A 4-node 3D-shell element to model shell surface tractions and incompressible behavior,” Comput. Struct., 86, 2027–2041 (2008).

    Article  Google Scholar 

  5. T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons Ltd, Chichester, (2000).

    MATH  Google Scholar 

  6. D. Chapelle and K.-J. Bathe, “Fundamental considerations for the finite element analysis of shell structures,” Comput. Struct., 66, 19–36 (1998).

    Article  Google Scholar 

  7. M. Geller, “A new method for derivation of locking-free plate bending finite elements via mixed/hybrid formulation,” Int. J. Numer. Meth. Eng., 26, 1185–1200 (1988).

    Article  Google Scholar 

  8. Ya. M. Grigorenko, A. Ya. Grigorenko, and L. I. Zakhariichenko, “Analysis of influence of the geometrical parameters of elliptic cylindrical shells with variable thickness on their stress–strain state,” Int. J. Appl. Mech., 54, No. 2, 155–162 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Hanèn and S. Mani-Aouadi, “A conforming locking-free approximation for a Koiter shell,” Appl. Math. Comp., 339, 374–389 (2018).

    Article  MathSciNet  Google Scholar 

  10. G. M. Kulikov and E. Carrera, “Finite deformation higher-order shell models and rigid-body motions,” Int. Solids. Struct., 45, 3153–3172 (2008).

    Article  Google Scholar 

  11. I. V. Lutskaya, V. A. Maksimyuk, and I. S. Chernyshenko, “Modelling the deformation of orthotropic toroidal shells with elliptical cross-section based on mixed functionals,” Int. Appl. Mech., 54, No. 6, 660–665 (2018).

    Article  ADS  Google Scholar 

  12. V. A. Maksimyuk, “Study of the nonlinearly elastic state of an orthotropic cylindrical shell with a hole, using mixed functionals,” Int. Appl. Mech., 37, No. 12, 1602–1606 (2001).

    Article  ADS  Google Scholar 

  13. V. A. Maksimyuk, E. A. Storozhuk, and I. S. Chernyshenko, “Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review),” Int. Appl. Mech., 48, No. 6, 613–687 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Pitkäranta, “Mathematical and historical reflections on the lowest-order finite element models for thin structures,” Comput. Struct., 81, 895–909 (2003).

    Article  Google Scholar 

  15. G. Prathap, The Finite Element Method in Structural Engineering, Vol. 24, Ser.: Solid Mechanics and Its Applications, Kluwer Academic Publ., Dordrecht (1993).

  16. E. Ramm and W. A. Wall, “Shell structures – a sensitive interrelation between physics and numerics,” Int. J. Numer. Meth. Eng., 60, 381–427 (2004).

    Article  MathSciNet  Google Scholar 

  17. B. Semper, “Locking in finite-element approximations to long thin extensible beams,” IMA J. Numer. Anal., 14, 97–109 (1994).

    Article  MathSciNet  Google Scholar 

  18. E. A. Storozhuk, I. S. Chernyshenko, and A. V. Yatsura, “Stress–strain state near a hole in a shear-compliant composite cylindrical shell with elliptical cross-section,” Int. Appl. Mech., 54, No. 5, 559–567 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  19. E. A. Storozhuk and A. V. Yatsura, “Exact solutions of boundary-value problems for noncircular cylindrical shells,” Int. Appl. Mech., 52, No. 4, 386–397 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  20. E. A. Storozhuk and A. V. Yatsura, “Analytical-numerical solution of static problems for noncircular cylindrical shells of variable thickness,” Int. Appl. Mech., 53, No. 3, 313–325 (2017).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Maksymyuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 56, No. 3, pp. 99–103, May–June 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksymyuk, V.A. Locking Phenomenon in Computational Methods of the Shell Theory. Int Appl Mech 56, 347–350 (2020). https://doi.org/10.1007/s10778-020-01017-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-020-01017-7

Keywords

Navigation