Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

Abstract

In 1970, Ahmad et al. [1] presented a shell element formulation that after many years still constitutes the basis for modern finite element analysis of shell structures. The original formulation was afterwards extended to material and geometric nonlinear analysis under the constraint of the infinitesimal strains assumption [2–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use Einstein’s notation: \( a_{k} b_{k} \equiv \sum\nolimits_{k} {a_{k} } b_{k} \), that is to say repeated indices indicate a summation.

  2. 2.

    Some authors use the notation \( {}^{o}\underline{g}^{i} \otimes {}^{o}\underline{g}^{j} \).

  3. 3.

    Please notice that shell elements are not compatible with Bernoulli beam elements.

References

  1. Ahmad S, Irons B, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2:419–451

    Article  Google Scholar 

  2. Ramm E (1977) A plate/shell element for large deflections and rotations. In: Bathe et al (ed) Formulations and computational algorithms in finite element analysis. MIT Press, Cambridge

    Google Scholar 

  3. Kråkeland B (1978) Nonlinear analysis of shells using degenerate isoparametric elements. In: Bergan et al (ed), Finite elements in nonlinear mechanics. Tapir Publishers, Norwegian Institute of Technology, Trondheim

    Google Scholar 

  4. Bathe K-J, Bolourchi S (1980) A geometric and material nonlinear plate and shell element. Comput Struct 11:23–48

    Article  MATH  Google Scholar 

  5. Bathe K-J (1996) Finite element procedures. Prentice Hall, Saddle River

    Google Scholar 

  6. Zienkiewicz O, Taylor R (2000) The finite element method. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  7. Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  8. Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383

    Article  MATH  Google Scholar 

  9. Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722

    Article  MATH  Google Scholar 

  10. Rodal J, Witmer E (1979) Finite-strain large-deflection elastic-viscoplastic finite-element transient analysis of structure. NASA CR 159874

    Google Scholar 

  11. Hughes T, Carnoy E (1983) Nonlinear finite element shell formulation accounting for large membrane strains. Comput Methods Appl Mech Eng 39:69–82

    Article  MATH  Google Scholar 

  12. Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304

    Article  MathSciNet  MATH  Google Scholar 

  13. Simo J, Fox D, Rifai M (1989) On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects. Comput Methods Appl Mech Eng 72:53–92

    Article  MathSciNet  Google Scholar 

  14. Simo J, Fox D, Rifai M (1990) On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput Methods Appl Mechs Eng 79:21–70

    Article  MathSciNet  MATH  Google Scholar 

  15. Simo J, Fox D, Rifai M (1992) On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81:91–126

    Article  MathSciNet  Google Scholar 

  16. Simo J, Kennedy J (1992) On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity formulation and integration algorithms. Comput Methods Appl Mech Eng 96:133–171

    Article  MathSciNet  MATH  Google Scholar 

  17. Büchter M, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37:2551–2568

    Article  MATH  Google Scholar 

  18. Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449

    Article  MATH  Google Scholar 

  19. Dvorkin EN, Pantuso D, Repetto E (1995) A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput Methods Appl Mech Eng 125:17–40

    Article  Google Scholar 

  20. Dvorkin EN (1995) Nonlinear analysis of shells using the MITC formulation. Arch Comput Methods En 2:1–50

    Article  MathSciNet  Google Scholar 

  21. Toscano RG, Dvorkin EN (2007) A shell element for finite strain analyses. Hyperelastic material models. Eng Comput 24:514–535

    Article  MATH  Google Scholar 

  22. Toscano RG, Dvorkin EN (2008) A new shell element for elasto-plastic finite strain analyzes. Application to the collapse and post-collapse analysis of marine pipelines. In: Abel J, Cooke J (eds), Proceedings 6th international conference on computation of shell & spatial structures, Spanning Nano to Mega. Ithaca

    Google Scholar 

  23. Dvorkin EN, Oñate E, Oliver X (1988) On a nonlinear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Methods Eng 26:1597–1613

    Article  MATH  Google Scholar 

  24. Dvorkin EN, Goldschmit MB (2005) Nonlinear continua. Springer, Berlin

    Google Scholar 

  25. Dvorkin EN (1992) On nonlinear analysis of shells using finite elements based on mixed interpolation of tensorial components. In: Rammerstorfer F (ed) Nonlinear analysis of shells by finite elements. Springer, New York

    Google Scholar 

  26. Gebhardt H, Schweizerhof K (1993) Interpolation of curved shell geometries by low order finite elements—errors and modifications. Int J Numer Methods Eng 36:287–302

    Article  MATH  Google Scholar 

  27. Simo J, Hughes T (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo N. Dvorkin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Dvorkin, E.N., Toscano, R.G. (2013). Shell Element Formulations for General Nonlinear Analysis. Modeling Techniques. In: Finite Element Analysis of the Collapse and Post-Collapse Behavior of Steel Pipes: Applications to the Oil Industry. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37361-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37361-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37360-2

  • Online ISBN: 978-3-642-37361-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics