Skip to main content
Log in

Theory of dynamic processes in mechanical systems and materials of regular structure

  • Published:
International Applied Mechanics Aims and scope

The theory of vibrations and waves in natural and synthesized materials of regular structure is analyzed. Models based on different averaging and continualization methods are outlined. Emphasis is on periodically inhomogeneous structures. The exact solutions are obtained and analyzed using the closed-form solution of infinite algebraic systems, representing equations in Hamiltonian operator form and solving them based on the theory of differential equations with periodic coefficients, mode selection rule, and methods of drawing wave shapes at limit and arbitrary frequencies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Antonenko and N. A. Shulga, “Dispersion of harmonic waves in laminated elastoplastic composites,” Strength of Materials, 14, No. 5, 668–671 (1982).

    Article  Google Scholar 

  2. I. Yu. Babich, A. N. Guz, and N. A. Shul’ga, “Investigation of the dynamics and stability of composite materials in a three-dimensional formulation (survey),” Int. Appl. Mech., 18, No. 1, 1–22 (1982).

    MATH  Google Scholar 

  3. M. K. Balakirev and I. A. Gilinskii, Waves in Piezocrystals [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  4. F. G. Bass, A. A. Bulgakov, and A. P. Teterev, High-Frequency Properties of Semiconductors with Superlattices [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  5. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  6. V. V. Bolotin, Dynamic Stability of Elastic Systems [in Russian], GITTL, Moscow (1956).

    Google Scholar 

  7. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, New York (1965).

    Google Scholar 

  8. M. Born and K. Huang, Dynamic Theory of Crystal Lattices, Oxford University Press, London (1954).

    Google Scholar 

  9. L. M. Brekhovskikh, Waves in Layered Media [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  10. L. Brillouin and M. Parodi, Wave Propagation in Periodic Structures, Dover, New York (1953).

    MATH  Google Scholar 

  11. V. V. Bolotin (ed.), Vibrations of Linear Systems, Vol. 1 of the six-volume Handbook Vibrations in Engineering [in Russian], Mashinostroenie, Moscow (1978).

  12. A. P. Vishtak, Dynamic Stress of Regularly Layered Elastic Bodies with Cylindrical and Spherical Interfaces [in Russian], Author’s Abstract of PhD Thesis, Inst. Mekh. AN USSR, Kyiv (1983).

  13. É. I. Grigolyuk and L. A. Fil’shtinskii, Regular Piecewise-Homogeneous Structures with Defects [in Russian], Fizmatlit, Moscow (1994).

    Google Scholar 

  14. É. I. Grigolyuk and L. A. Fil’shtinskii, “Perforated plates and shells and associated problems (review of results),” in: Advances in Science and Technology, Ser. Elasticity and Plasticity [in Russian], Vol. 2, VINITI, Moscow (1967), pp. 1–164.

  15. A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  16. A. N. Guz and V. T. Golovchan, Diffraction of Elastic Waves in Multiply Connected Bodies [in Russian], Naukova Dumka, Kyiv (1972).

    Google Scholar 

  17. A. N. Guz, V. D. Kubenko, and M. A. Cherevko, Diffraction of Elastic Waves [in Russian], Naukova Dumka, Kyiv (1978).

    Google Scholar 

  18. A. N. Guz, V. T. Tomashevskii, N. A. Shul’ga, and V. S. Yakovlev, Process-Induced Stresses and Strains in Composites [in Russian], Vyshcha Shkola, Kyiv (1988).

    Google Scholar 

  19. B. P. Demidovich, Lectures on the Theory of Stability [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  20. A. N. Guz, I. Kabelka, D. Markus, et al., Dynamics and Stability of Laminated Composites [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  21. E. Dieulesaint and D. Royer, Elastic Waves in Solids: Applications to Signal Processing, Wiley-Interscience, New York (1981).

    Google Scholar 

  22. L. P. Zinchuk, Propagation of Acoustoelectric Shear Waves in Regularly Layered Media [in Russian], Author’s Abstract of PhD Thesis, Inst. Mekh. AN USSR, Kyiv (1989).

  23. N. A. Kil’chevskii, A Course of Theoretical Mechanics [in Russian], Vol. 2, Nauka, Moscow (1977).

    Google Scholar 

  24. W. Kohn, J. A. Krumhansl, and E. H. Lee, “Variational methods for dispersion relations and elastic properties of composite materials,” ASME, J. Appl. Mech., 39, No. 2, 327–336 (1972).

    Google Scholar 

  25. A. G. Kutsenko, Propagation of Bending Waves in Periodically Structures Elastic Systems [in Russian], Author’s Abstract of PhD Thesis, Kyiv. Nats. Univ. im. T. Shevchenka, Kyiv (2002).

  26. P. A. Kuchment, “Floquet’s theory for partial differential equations,” Usp. Mat. Nauk, 37, No. 4 (226), 3–52 (1982).

    MathSciNet  Google Scholar 

  27. V. V. Levchenko, Propagation of Magnetoelastic Waves in Regularly Layered Media [in Russian], Author’s Abstract of PhD Thesis, Inst. Mekh. AN USSR, Kyiv (1985).

  28. V. V. Levchenko, A. N. Podlipenets, and N. A. Shul’ga, “Vibration modes at the transmission edges of shear body waves in a regularly layered medium,” Prikl. Mekh., 20, No. 11, 111–115 (1984).

    Google Scholar 

  29. V. V. Levchenko, A. N. Podlipenets, and N. A. Shul’ga, “Mode shapes at the boundaries of the transmission zones for plane-polarized bulk waves in a regularly layered medium,” Int. Appl. Mech., 21, No. 1, 13–18 (1985).

    Google Scholar 

  30. V. V. Levchenko, A. N. Podlipenets, and N. A. Shul’ga, “Propagation of torsional waves in a cylindrical waveguide having regular inhomogeneities,” Int. Appl. Mech., 21, No. 7, 625–629 (1985).

    MATH  Google Scholar 

  31. V. V. Levchenko and N. A. Shul’ga, “A homogeneous boundary-value problem for a regularly layered waveguide,” Vych. Prikl. Math., 50, 83–87 (1983).

    Google Scholar 

  32. N. W. MacLachlan, Theory and Application of Mathieu Functions, Dover, New York (1964).

    Google Scholar 

  33. V. A. Marchenko and E. Ya. Khruslov, Boundary-Value Problems in Domains with Fine-Grained Boundary [in Russian], Naukova Dumka, Kyiv (1974).

    MATH  Google Scholar 

  34. N. A. Shul’ga (ed.), Dynamics and Stability of Materials, Vol. 2 of the 12 volume series Mechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1993).

  35. L. P. Khoroshun (ed.), Statistical Mechanics and Effective Properties of Materials, Vol. 3 of the 12-volume series Mechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1993).

  36. N. A. Shul’ga and V. T. Tomashevskii (eds.), Process-Induced Stresses and Strains in Materials, Vol. 6 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kyiv (1997).

  37. A. N. Guz, L. P. Khoroshun, V. A. Vanin, et al., Mechanics of Composite Materials and Structural Members, Vol. 1 of the three-volume series Mechanics of Materials [in Russian], Naukova Dumka, Kyiv (1982).

  38. E. I. Nefedov and A. N. Sivov, Electrodynamics of Periodic Structures [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  39. O. A. Oleinik, G. A. Iosif’yan, and A. S. Shamaev, Mathematical Problems for Strongly Inhomogeneous Elastic Media [in Russian], Izd. Mosk. Gos. Univ., Moscow (1990).

    Google Scholar 

  40. A. N. Podlipenets, Propagation of Surface and Body Waves in Regularly Laminated Composites [in Russian], Author’s Abstract of PhD Thesis, Inst. Mekh. AN USSR, Kyiv (1986).

  41. V. T. Golovchan, B. D. Kubenko, N. A. Shul’ga, A. N. Guz, and A. N. Grinchenko, Dynamics of Elastic Bodies, Vol. 5 of the five-volume series Three-Dimensional Problems of Elasticity and Plasticity [in Russian], Naukova Dumka, Kyiv (1986).

  42. Strength, Stability, and Vibration, Vol. 2 of the three-volume Handbook [in Russian], Mashinostroenie, Moscow (1968).

  43. G. I. Pshenichnov, Theory of Thin Elastic Wire-Mesh Shells and Plates [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  44. T. V. Ratushnyak, Propagation of Magnetoelastic Shear Waves in Regularly Layered Magnetostrictive Media [in Ukrainian], Author’s Abstract of PhD Thesis, Inst. Mekh. NANU, Kyiv (2006).

  45. J. J. Rushchitsky and S. I. Tdurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. im. Timoshenka NAN Ukrainy, Kyiv (1997).

    Google Scholar 

  46. V. G. Savin, Wave Propagation in Semiinfinite Layered Periodic Structures [in Russian], Author’s Abstract of PhD Thesis, Inst. Mekh. AN USSR, Kyiv (1974).

  47. L. N. Syrkin, Piezomagnetic Ceramics [in Russian], Énergiya, Leningrad (1980).

    Google Scholar 

  48. J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics, North-Holland, Amsterdam (1972).

    Google Scholar 

  49. Advances in Mechanics [in Russian], Vol. 4, Litera LTD, Kyiv (2008).

  50. W. P. Mason (ed.), Physical Acoustics: Principles and Methods, Vol. 1, Part A, Methods and Devices, Academic Press, New York–London (1964).

    MATH  Google Scholar 

  51. V. P. Shestopalov, L. N. Litvinenko, S. A. Maslov, and V. G. Sologub, Diffraction of Waves by Lattices [in Russian], Izd. Khark. Univ., Kharkov (1973).

    Google Scholar 

  52. I. Z. Shtokalo, Linear Differential Equations with Variable Coefficients [in Russian], Izd. AN USSR, Kyiv (1960).

    Google Scholar 

  53. 53. V. M. Shul’ga and O. M. Shul’ga, “On the theory of electroacoustic waves in stratified periodic structures,” Visn. Kyiv. Univ., Ser. Mat. Mekh., 3, 111–116 (1997).

    Google Scholar 

  54. M. O. Shul’ga, “Solving problems of mechanics for periodic structures,” Dop. AN URSR, Ser. A, No. 11, 1039–1042 (1971).

  55. M. O. Shul’ga, “On propagation of transverse waves in magnetoelastic periodic media,” Dop. NANU, No. 7, 60–63 (2002).

    Google Scholar 

  56. M. O. Shul’ga, “Theory of magnetoelastic waves in periodic media,” Dop. NANU, No. 8, 55–59 (2002).

    Google Scholar 

  57. M. O. Shul’ga, “Theory of waves in stratified periodic media,” Sopr. Mater. Teor. Sporud, 70, 33–48 (2002).

    Google Scholar 

  58. M. O. Shul’ga, “Shapes of elastic body waves in isotropic periodically inhomogeneous media,” Dop. NANU, No. 8, 48–51 (2005).

    Google Scholar 

  59. M. Shul’ga, “Applying the Hamiltonian formalism in the theory of magnetoviscoelastic shear waves in periodic inhomogeneous media,” Fiz.-Mat. Model. Inform. Tekhnol., 3, 217–224 (2006).

    Google Scholar 

  60. N. A. Shul’ga, “Propagation of shear waves in stratified media with periodic properties,” Prikl. Mekh., 20, No. 3, 116–119 (1984).

    Google Scholar 

  61. N. A. Shul’ga, “Wave motions in laminated composites at the transmission edges of body waves,” in: Proc. 2nd All-Union Sci.-Tech. Conf. on Strength, Stiffness, and Producibility of Composite Parts [in Russian], Vol. 3, Izd. EGU, Yerevan, 210–212.

  62. N. A. Shul’ga, Fundamentals of the Mechanics of Periodic Layered Media [in Russian], Naukova Dumka, Kyiv (1981).

    Google Scholar 

  63. N. A. Shul’ga, “Dispersion wave propagation in laminated composites,” in: Problems of Mechanics [in Russian], Fizmatlit, Moscow (2003), pp. 819–827.

  64. N. A. Shul’ga, “Propagation of elastic waves in periodically inhomogeneous media,” Int. Appl. Mech., 39, No. 7, 763–796 (2003).

    Article  Google Scholar 

  65. N. A. Shul’ga, “Propagation of coupled waves interacting with an electromagnetic field in periodically inhomogeneous media,” Int. Appl. Mech., 39, No. 10, 1146–1172 (2003).

    Article  MathSciNet  Google Scholar 

  66. N. A. Shul’ga, “Spatial modes in periodically inhomogeneous media,” Int. Appl. Mech., 41, No. 5, 463–468 (2005).

    Article  MathSciNet  Google Scholar 

  67. N. A. Shul’ga and V. V. Levchenko, “Three-dimensional problem of linearized magnetostriction of ferrites with ferromagnetic resonance,” Dop. NAN Ukrainy, No. 8, 73–77 (2007).

    Google Scholar 

  68. M. O. Shul’ga, V. V. Levchenko, and T. V. Ratushnyak, “Applying the Hamiltonian formalism in the theory of magnetostatic waves in periodic ferromagnetic structures,” Visn. Donetsk. Univ., Ser. A, No. 1, 136–140 (2002).

  69. M. O. Shul’ga, V. V. Levchenko, and T. V. Ratushnyak, “Surface magnetoelastic shear waves in periodic ferrite–dielectric regularly stratified structures,” Int. Appl. Mech., 39, No. 11, 1305–1309 (2003).

    Article  Google Scholar 

  70. N. A. Shul’ga, V. V. Levchenko, and T. V. Ratushnyak, “Propagation of magnetoelastic shear waves across layers in a periodically layered medium,” Int. Appl. Mech., 42, No. 6, 655–660 (2006).

    Article  Google Scholar 

  71. N. A. Shul’ga and T. V. Ratushnyak, “Forms of oscillatory motions of surface magnetoelastic waves of Love type in periodic ferrite-dielectric media,” Int. Appl, Mech., 40, No. 8, 76 – 83 (2004).

    MATH  Google Scholar 

  72. N. A. Shul’ga and T. V. Ratushnyak, “Spatial shear modes in periodically inhomogeneous media,” Int. Appl. Mech., 41, No. 8, 876–881 (2005).

    Article  Google Scholar 

  73. N. A. Shul’ga and T. V. Ratushnyak, “Forms of bulk magnetoelastic waves on boundaries of zones of transmission in periodically-non-uniform medium,” Int. Appl. Mech., 42, No. 3, 300–307 (2006).

    Article  Google Scholar 

  74. N. A. Shul’ga and T. V. Ratushnyak, “On shapes of body waves in periodically inhomogeneous, magnetostrictive, dielectric materials,” Int. Appl. Mech., 42, No. 7, 775–781 (2006).

    Article  Google Scholar 

  75. N. A. Shul’ga and T. V. Ratushnyak, “Magnetoelastic shear body waves in periodically inhomogeneous media,” Int. Appl. Mech., 42, No. 10, 1092–1098 (2006).

    Article  Google Scholar 

  76. N. D. Shul’ga, Propagation of Waves in Laminated Composites with Interphase Imperfactions [in Ukrainian], Author’s Abstract of PhD Thesis, KIBI, Kyiv (1993).

  77. O. M. Shul’ga, “Solving the vibration equations in the classical theory of plates with parameters periodic in one coordinate,” Teor. Prikl. Mekh., 25, 109–113 (1996).

    Google Scholar 

  78. O. M. Shul’ga, “Wave solutions of the Timoshenko-type equations of transverse vibrations of plates with parameters periodic in one coordinate,” Teor. Prikl. Mekh., 26, 105–111 (1996).

    Google Scholar 

  79. O. M. Shul’ga, “Theory of edge effects in inhomogeneous periodic rods undergoing harmonic transverse vibrations,” Dop. NAN Ukrainy, No. 11, 78–84 (1999).

    Google Scholar 

  80. O. M. Shul’ga, Vibrations of Inhomogeneous Periodic Rods [in Ukrainian], Author’s Abstract of PhD Thesis, Inst. Mekh. NANU, Kyiv (2000).

  81. C. Elachi, “Waves in active and passive periodic structures: A review,” Proc. IEEE, 64, No. 12, 1666–1698 (1966).

    Article  ADS  Google Scholar 

  82. A. I. Yamkovoi, Studying the Dynamic Stress of Isotropic Regularly Layered Elastic Bodies under Vibratory Loads [in Russian], Author’s Abstract of PhD Thesis, Inst. Mekh. AN USSR, Kyiv (1978).

  83. H. Abramovich and V. A. Zarutskii, “Propagation of harmonic waves along open circular cylindrical shells reinforced with a quasiregular set of discrete longitudinal ribs,” Int. Appl. Mech., 45, No. 9, 1000–1006 (2009).

    Article  Google Scholar 

  84. H. Abramovich and V. A. Zarutskii, “Stability and vibrations of nonclosed circular cylindrical shells reinforced with discrete longitudinal ribs,” Int. Appl. Mech., 44, No. 1, 16–22 (2008).

    Article  Google Scholar 

  85. F. Bloch, “Uber die Quantenmechanick der Elektronen in Kristallgittern,” Zeitschrift fur Physik, 52, 555–600 (1928).

    Article  ADS  Google Scholar 

  86. W. Flügge, “Die Stability der Kreiszylinder-schale,” Ing.-Arch., 111, No. 5, 463–506 (1932).

    Article  Google Scholar 

  87. A. N. Guz and N. A. Shulga, “Dynamics of laminated and fibrous composites,” Appl. Mech. Rev., 45, No. 2, 35–60 (1992).

    Article  Google Scholar 

  88. R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc., Ser. A, 65, No. 389, pt. 5, 349–354 (1952).

    Article  ADS  Google Scholar 

  89. V. V. Levchenko and N. A. Shul’ga, “Surface elastic and magneto-elastic waves in ferrite–dielectric structures,” in: Proc. 2nd Int. Symp. on Surface Waves in Solids and Layered Structures ISSWAS’89, 2, Varna, Bulgaria, September 14–19 (1989), pp. 309–311.

  90. M. P. Malezhyk and I. S. Chernyshenko, “Solution of nonstationary problems in the mechanics of anisotropic bodies by the method of dynamic photoelasticity,” Int. Appl. Mech., 45, No. 9, 954–980 (2009).

    Article  Google Scholar 

  91. A. N. Podlipenets, N. A. Shulga, and L. P. Zinchuk, “Hamiltonian system formalism in the theory of acoustic wave prîpagation in multilayered piezoelectrics,” ZAMM, 76, No. 5, 396–397 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Shul’ga.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 45, No. 12, pp. 43–80, December 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shul’ga, N.A. Theory of dynamic processes in mechanical systems and materials of regular structure. Int Appl Mech 45, 1301–1330 (2009). https://doi.org/10.1007/s10778-010-0269-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-010-0269-5

Keywords

Navigation