Skip to main content
Log in

Influence of material and geometrical nonlinearities on the bifurcations of equilibrium states of a two-link pendulum

  • Published:
International Applied Mechanics Aims and scope

Abstract

The equilibrium states of an inverted two-link simple pendulum with an asymmetric follower force are classified depending on the characteristics of the springs (hard, soft, or linear) at the upper end and at the hinges. Phase portraits are plotted. The bifurcation points on the equilibrium curves are identified. Emphasis is on fold and cusp catastrophes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Bolotin, Dynamic Stability of Elastic Systems [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  2. V. V. Bolotin, Nonconservative Problems in the Theory of Elastic Stability [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  3. V. A. Dzhupanov and Sv. V. Lilkova-Markova, “Dynamic stability of a fluid-conveying cantilevered pipe on an additional combined support,” Int. Appl. Mech., 39, No. 2, 185–191 (2003).

    Article  Google Scholar 

  4. L. G. Lobas, V. V. Koval’chuk, and O. V. Bambura, “Evolution of the equilibrium states of an inverted pendulum,” Int. Appl. Mech., 43, No. 3, 344–350 (2007).

    Article  Google Scholar 

  5. L. G. Lobas, V. V. Koval’chuk, and O. V. Bambura, “Equilibrium states of a pendulum with an asymmetric follower force,” Int. Appl. Mech., 43, No. 4, 460–466 (2007).

    Article  Google Scholar 

  6. L. G. Lobas, V. V. Koval’chuk, and O. V. Bambura, “Theory of inverted pendulum with follower force revisited,” Int. Appl. Mech., 43, No. 6, 690–700 (2007).

    Article  Google Scholar 

  7. L. G. Lobas, V. V. Koval’chuk, and O. V. Bambura, “Influence of concurrent use of springs with characteristics of different types on the equilibrium of an inverted pendulum,” Int. Appl. Mech., 43, No. 7, 793–798 (2007).

    Article  Google Scholar 

  8. L. G. Lobas and L. L. Lobas, “Bifurcations, stability, and catastrophes of the equilibrium states of a double pendulum with an asymmetric follower force,” Izv. RAN, Mekh. Tverd. Tela, No. 4, 139–149 (2004).

  9. H. Ziegler, “On the concepts of elastic stability,” in: Advances in Applied Mechanics, Vol. 4, Acad. Press, New York (1956), pp. 351–403.

    Google Scholar 

  10. V. A. Dzhupanov and Sv. V. Lilkova-Markova, “Divergent instability domains of a fluid-conveying cantilevered pipe with a combined support,” Int. Appl. Mech., 40, No. 3, 319–321 (2004).

    Article  Google Scholar 

  11. I. Elishakoff, “Controversy associated with the so-called ‘follower forces’: critical overview,” Trans. ASME, Appl. Mech. Rev., 58, No. 3, 117–141 (2005).

    Article  MathSciNet  Google Scholar 

  12. P. Hagedorn, “On the destabilizing effect of non-linear damping in non-conservative systems with follower forces,” Int. J. Non-Lin. Mech., 5, No. 2, 341–358 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  13. J.-D. Jin and Y. Matsuzaki, “Bifurcations in a two-degree-of freedom elastic system with follower forces,” J. Sound Vibr., 126, No. 2, 265–277 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  14. J.-D. Jin and Y. Matsuzaki, “Stability and bifurcations of a double pendulum subjected to a follower force,” in: Proc. AIAA/ASME/ASCE/AHS/ASC 30th Structures, Structural Dynamics and Materials Conf. (Mobile, Ala, April 3–5, 1989), pt. 1, Washington (1989), pp. 432–439.

  15. W. T. Koiter, “Unrealistic follower forces,” J. Sound Vibr., 194, No. 4, 636–638 (1996).

    Article  ADS  Google Scholar 

  16. L. G. Lobas, “Generalized mathematical model of an inverted multilink pendulum with follower force,” Int. Appl. Mech., 41, No. 5, 566–572 (2005).

    Article  Google Scholar 

  17. L. G. Lobas, “Dynamic behavior of multilink pendulums under follower forces,” Int. Appl. Mech., 41, No. 6, 587–613 (2005).

    Article  MathSciNet  Google Scholar 

  18. L. G. Lobas and V. V. Koval’chuk, “Influence of the nonlinearity of the elastic elements on the stability of a double pendulum with follower force in the critical case,” Int. Appl. Mech., 41, No. 4, 455–461 (2005).

    Article  Google Scholar 

  19. V. L. Lobas, “Influence of the nonlinear characteristics of elastic elements on the bifurcations of equilibrium states of a double pendulum with follower force,” Int. Appl. Mech., 41, No. 2, 197–202 (2005).

    Article  MathSciNet  Google Scholar 

  20. Y. Matsuzaki and S. Futura, “Conimension three bifurcation of a double pendulum subjected to a follower force with imperfection,” in: Proc. AIAA Dyn. Spec. Conf. (Long Beach, California, April 5–6, 1990), Washington (1990), pp. 387–394.

  21. S. Otterbein, “Stabilisierung des n-Pendels und der Indische Seiltrick,” Arch. Rat. Mech. Anal., 78, No. 4, 381–393 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Pflüger, Stabilitäts Probleme der Elastostatik, Springer, Berlin-Göttingen-Heidelberg (1950).

    Google Scholar 

  23. R. Scheidl, H. Troger, and K. Zeman, “Coupled flutter and divergence bifurcation of a double pendulum,” Int. J. Non-Linear Mech., 19, No. 2, 163–176 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. A. Shinohara, “A geometric method for numerical solution of non-linear equations and its application to non-linear oscillations,” Publ. RJMS, Kyoto Univ., 8, No. 1, 13–42 (1972).

    MathSciNet  Google Scholar 

  25. Y. Sugiyama, M. A. Langthjem, and B. J. Ryu, “Realistic follower forces,” J. Sound Vibr., 225, No. 4, 779–782 (1999).

    Article  ADS  Google Scholar 

  26. H. Troger and A. Steindl, Nonlinear Stability and Bifurcation Theory, Springer-Verlag, Vienna-New York (1991).

    MATH  Google Scholar 

  27. H. Ziegler, “Die Stabilitatskriterien der Elastomechanik,” Ing.-Arch., 20, No. 1, 49–56 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Ziegler, “Linear elastic stability” ZAMP, 4, No. 2, 89–121; No. 3, 167–185 (1953).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 43, No. 8, pp. 115–128, August 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobas, L.G., Koval’chuk, V.V. & Bambura, O.V. Influence of material and geometrical nonlinearities on the bifurcations of equilibrium states of a two-link pendulum. Int Appl Mech 43, 924–934 (2007). https://doi.org/10.1007/s10778-007-0093-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-007-0093-8

Keywords

Navigation