Skip to main content

Advertisement

Log in

Bouncing Cosmology with 4D-EGB Gravity

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Not long ago, a novel gravitational scheme i.e, \(4D-EGB\) (Einstein-Gauss-Bonnet) gravity have been proposed by Glavan and Lin 2020. They rescaled the coupling factor \(\alpha \) with \(\frac{\alpha }{D-4}\) and developed the field equations. The purpose of this paper is to workout the cosmic bounce with a cubic form of scale factor and workout the bouncing scenario under these assumptions. The flat FLRW metric is used along with the perfect fluid to study the energy conditions. The conditions are scrutinized by using different coupling factors \(\alpha \) and cosmological constant \(\Lambda \) values. The stability of the assumed scale factor model is in evidence of universal expansion and allows the universal bounce by developing the validations of energy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Glavan, D., Lin, C.: Einstein- Gauss- Bonnet gravity in four-dimensional spacetime. Phys. Rev. Lett. 124(8), 081301 (2020)

    ADS  MathSciNet  Google Scholar 

  2. Smolin, L.: Time reborn: From the crisis in physics to the future of the universe. HMH (2013)

  3. Davies, P.: The Goldilocks enigma: Why is the universe just right for life?. HMH (2008)

  4. Toulmin, S. E. and Toulmin, S.: The return to cosmology: Postmodern science and the theology of nature. Univ of California Press (1985)

  5. Gribbin, J.: Stephen Hawking. Simon and Schuster (2016)

  6. Hubble, E.P.: The observational approach to cosmology, vol. 30. Clarendon Press, Oxford (1937)

    Google Scholar 

  7. Kirshner, R.P.: Hubble’s diagram and cosmic expansion. Proc. Natl. Acad. Sci. 101(1), 8–13 (2004)

    ADS  Google Scholar 

  8. Maurya, S.K., Gupta, Y.K., Dayanandan, B., Ray, S.: A new model for spherically symmetric anisotropic compact star. Eur. Phys. J. C. 76, 1–9 (2016)

    Google Scholar 

  9. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509(4–5), 167–321 (2011)

    ADS  MathSciNet  Google Scholar 

  10. Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1–4 (2003)

    ADS  MATH  Google Scholar 

  11. Baade, W., Zwicky, F.: Cosmic rays from super-novae. Proc. Natl. Acad. Sci. 20(5), 259–263 (1934)

    ADS  Google Scholar 

  12. Yousaf, Z., Bhatti, M.Z., Asad, H.: Gravastars in \(f(R, T, R_{\mu \nu }T^{\mu \nu })\) gravity. Phys. Dark Universe 28, 100527 (2020)

    Google Scholar 

  13. Yousaf, Z., Bhatti, M.Z., Aman, H., Sahoo, P.K.: Non-singular bouncing model in energy momentum squared gravity. Phys. Scr. 98, 035002 (2023)

    ADS  Google Scholar 

  14. Tomozawa, Y.: Quantum corrections to gravity. arXiv:1107.1424 (2011)

  15. Cognola, G.., Myrzakulov, R.., Sebastiani, L.., Zerbini, S..: Einstein gravity with Gauss-Bonnet entropic corrections. Phys. Rev. D 88(2), 024006 (2013)

    ADS  Google Scholar 

  16. Fernandes, P.G.S.: Charged black holes in Ad S spaces in 4 D Einstein Gauss- Bonnet gravity. Phys. Lett. B 805, 135468 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Doneva, D.D., Yazadjiev, S.S.: Relativistic stars in 4 D Einstein- Gauss- Bonnet gravity. J. Cosmol. Astropart. Phys. 05, 024 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Konoplya, R.A., Zhidenko, A.: (in) stability of black holes in the 4 D Einstein- Gauss - Bonnet and Einstein- Lovelock gravities. Phys. Dark Universe 30, 100697 (2020)

    Google Scholar 

  19. Zhang, C.-Y., Li, P.-C., Guo, M.: Greybody factor and power spectra of the hawking radiation in the 4 D Einstein–Gauss–Bonnet de-Sitter gravity. Eur. Phys. J. C 80(9), 874 (2020)

    ADS  Google Scholar 

  20. Singh, D.V., Ghosh, S.G., Maharaj, S.D.: Clouds of strings in 4 D Einstein- Gauss- Bonnet black holes. Phys. Dark Universe 30, 100730 (2020)

    Google Scholar 

  21. Churilova, M.S.: Quasinormal modes of the Dirac field in the consistent 4 D Einstein- Gauss- Bonnet gravity. Phys. Dark Universe 31, 100748 (2021)

    Google Scholar 

  22. Mishra, A.K.: Quasinormal modes and strong cosmic censorship in the regularised 4D Einstein–Gauss–Bonnet gravity. Gen. Relativ. Gravit 52(11), 106 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Islam, S.U., Kumar, R., Ghosh, S.G.: Gravitational lensing by black holes in the 4D Einstein-Gauss-Bonnet gravity. J. Cosmol. Astropart. Phys. 2020(09), 030 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Ai, W.-Y.: A note on the novel 4D Einstein–Gauss–Bonnet gravity. Commun. Theor. Phys 72(9), 095402 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Matarrese, S., Colpi, M., Gorini, V. and Moschella, U.: Dark Matter and Dark Energy: A challenge for modern cosmology, vol. 370. Springer Science & Business Media (2011)

  26. Myrzakulov, R.: FRW cosmology in f (R, T) gravity. Eur. Phys. J. C 72(11), 2203 (2012)

    ADS  Google Scholar 

  27. Padmanabhan, T.: Cosmological constant-the weight of the vacuum. Phys. Rep. 380(5–6), 235–320 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Del Popolo, A.: Dark matter, density perturbations, and structure formation. Astron. Rep. 51(3), 169–196 (2007)

    ADS  Google Scholar 

  29. Capozziello, S., Francaviglia, M.: Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 40, 357–420 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Kolb, E.W.: and Turner. The early universe. C R C press, M. S. (2018)

    Google Scholar 

  31. Odintsov, S.D., Paul, T., Banerjee, I., Myrzakulov, R., SenGupta, S.: Unifying an asymmetric bounce to the dark energy in chern-simons f( R) gravity. Phys. Dark Universe 33, 100864 (2021)

    Google Scholar 

  32. Cai, Y.-F.: Exploring bouncing cosmologies with cosmological surveys. Sci. China: Phys. Mech. Astron. 57, 1414–1430 (2014)

    ADS  Google Scholar 

  33. Elizalde, E., Odintsov, S.D., Oikonomou, V.K., Paul, T.: Extended matter bounce scenario in ghost free f ( R, G) gravity compatible with GW170817. Nuc. Phys. B 954, 114984 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Hoyle, F., Burbidge, G. and Narlikar, J. V.: A different approach to cosmology: from a static universe through the big bang towards reality. Cambridge University Press (2000)

  35. Nojiri, S., Odintsov, S.D., Paul, T.: Towards a smooth unification from an ekpyrotic bounce to the dark energy era. Phys. Dark Universe 35, 100984 (2022)

    Google Scholar 

  36. Agrawal, A. S., Chakraborty, S., Mishra, B., Dutta, J. and Khyllep, W.: “Global phase space analysis for a class of single scalar field bouncing solutions in general relativity,” arXiv:2212.10272 (2022)

  37. Ijjas, A., Steinhardt, P.J.: Classically stable nonsingular cosmological bounces. Phys. Rev. Lett. 117(12), 121304 (2016)

    ADS  MathSciNet  Google Scholar 

  38. Ijjas, A., Steinhardt, P.J., Loeb, A.: Inflationary paradigm in trouble after Planck 2013. Phys. Lett. B 723(4–5), 261–266 (2013)

    ADS  Google Scholar 

  39. Ijjas, A., Steinhardt, P.J.: A new kind of cyclic universe. Phys. Lett. B 795, 666–672 (2019)

    ADS  Google Scholar 

  40. Zhu, M. and Cai, Y. Parity-violation in bouncing cosmology. arXiv:2301.13502 (2023)

  41. Cai, Y.-F., Easson, D.A., Brandenberger, R.: Towards a nonsingular bouncing cosmology. J. Cosmol. Astropart. Phys. 2012(08), 020 (2012)

    Google Scholar 

  42. Cai, Y.-F., Quintin, J., Saridakis, E.N., Wilson-Ewing, E.: Nonsingular bouncing cosmologies in light of BICEP2. J. Cosmol. Astropart. Phys. 2014(07), 033 (2014)

    Google Scholar 

  43. Cai, Y.-F. and Saridakis, E. N.: Non-singular cyclic cosmology without phantom menace. arXiv:1108.6052 (2011)

  44. Cai, Y.-F., McDonough, E., Duplessis, F., Brandenberger, R.H.: Two field matter bounce cosmology. J. Cosmol. Astropart. Phys 2013(10), 024 (2013)

    MathSciNet  Google Scholar 

  45. Agrawal, A., Tripathy, S.K., Pal, S., Mishra, B.: Role of extended gravity theory in matter bounce dynamics. Phys. Scr. 97(2), 025002 (2022)

    ADS  Google Scholar 

  46. Odintsov, S.D., Paul, T.: Bounce universe with finite-time singularity. Universe 8(5), 292 (2022)

    ADS  Google Scholar 

  47. Nojiri, S., Odintsov, S.D., Oikonomou, V.K., Paul, T.: Nonsingular bounce cosmology from lagrange multiplier F (R) gravity. Phys. Rev. D 100(8), 084056 (2019)

    ADS  MathSciNet  Google Scholar 

  48. Curiel, E.: The analysis of singular spacetimes. Philos. Sci. 66, S119–S145 (1999)

    MathSciNet  Google Scholar 

  49. Shamir, M.F.: Bouncing cosmology in gravity with logarithmic trace term. Adv. Astron. 2021, 8852581 (2021)

    ADS  Google Scholar 

  50. Yousaf, Z., Bhatti, M.Z., Aman, H.: Cosmic bounce with \(\alpha (e^{-\beta {G}}- 1)+ 2\lambda \) T model. Phys. Scr. 97(5), 055306 (2022)

    ADS  Google Scholar 

  51. Konoplya, R.A., Zinhailo, A.F.: Quasinormal modes, stability and shadows of a black hole in the 4 D Einstein- Gauss- Bonnet gravity. Eur. Phys. J. C 80, 1–13 (2020)

    Google Scholar 

  52. Mansoori, S.A.H.: Thermodynamic geometry of the novel 4- D Gauss- Bonnet Ad S black hole. Phys. Dark Universe 31, 100776 (2021)

    Google Scholar 

  53. Bonifacio, J., Hinterbichler, K., Johnson, L.A.: Amplitudes and 4D Gauss-Bonnet Theory. Phys. Rev. D 102(2), 024029 (2020)

    ADS  MathSciNet  Google Scholar 

  54. Ghosh, S.G., Kumar, R.: Generating black holes in 4 D Einstein- Gauss- Bonnet gravity. Class. Quantum Grav. 37, 245008 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Wei, S.-W., Liu, Y.-X.: Extended thermodynamics and microstructures of four-dimensional charged Gauss- Bonnet black hole inAds space. Phys. Rev. D 101, 104018 (2020)

    ADS  MathSciNet  Google Scholar 

  56. Zubair, M., Farooq, M.: Bouncing behaviours in four dimensional einstein Gauss- Bonnet gravity with cosmography and observational constraints. Eur. Phys. J. Plus 138, 173 (2023)

    Google Scholar 

  57. Easson, D.A., Manton, T., Svesko, A.: \(d\rightarrow 4\) Einstein- Gauss- Bonnet gravity and beyond. J. Cosmol. Astropart. Phys. 10, 026 (2020)

    ADS  MATH  Google Scholar 

  58. Van Acoleyen, K., Van Doorsselaere, J.: Galileons from lovelock actions. Phys. Rev. D 83(8), 084025 (2011)

    ADS  Google Scholar 

  59. Bueno, P., Cano, P.A., Ramírez, P.F., et al.: f (lovelock) theories of gravity. J. High Energy Phys. 2016(4), 1–40 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Lovelock, D.: The einstein tensor and its generalizations. J. Math. Phys. 12(3), 498–501 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  61. A. S. Agrawal, B. Mishra, and P. K. Agrawal, Matter bounce scenario in extended symmetric teleparallel gravity. arXiv:2206.02783 (2022)

  62. Odintsov, S.D., Paul, T.: A non-singular generalized entropy and its implications on bounce cosmology. Phys. Dark Universe 39, 101159 (2023)

    Google Scholar 

  63. K. Bamba, A. N. Makarenko, A. N. Myagky, S. Nojiri, and S. D. Odintsov, “Bounce cosmology from f (R) gravity and f (R) bigravity,” J. Cosmol. Astropart. Phys., vol. 2014(01) 008 (2014)

  64. Singh, J. K., Bamba, K. , et al.: Bouncing universe in Gauss-Bonnet gravity. arXiv e-prints, arXiv–2204 (2022)

  65. Yousaf, Z., Bhatti, M.Z., Aman, H.: The bouncing cosmic behavior with logarithmic law \(f ( {G, T})\) model. Chin. J. Phys. 79, 275–286 (2022)

    MathSciNet  Google Scholar 

  66. Ford, L.H., Roman, T.A.: Averaged energy conditions and quantum inequalities. Phys. Rev. D 51(8), 4277 (1995)

    ADS  MathSciNet  Google Scholar 

  67. Visser, M., Kar, S., Dadhich, N.: Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 90(20), 201102 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Creminelli, P., Luty, M.A., Nicolis, A., Senatore, L.: Starting the universe: stable violation of the null energy condition and non-standard cosmologies. J. High Energy Phys. 2006(12), 080 (2006)

    MathSciNet  MATH  Google Scholar 

  69. Santos, J., Alcaniz, J.S., Reboucas, M.J., Carvalho, F.C.: Energy conditions in f (R) gravity. Phys. Rev. D 76(8), 083513 (2007)

    ADS  MathSciNet  Google Scholar 

  70. O. Galkina, J. C. Fabris, F. T. Falciano, and N. Pinto-Neto: Regular bouncing solutions, energy conditions, and the brans “dicke theory”, J E T P Letters, 110(8), 523–528 (2019)

  71. Giovannini, M.: Averaged energy conditions and bouncing universes. Phys. Rev. D 96(10), 101302 (2017)

    ADS  MathSciNet  Google Scholar 

  72. Capozziello, S., Lobo, F.S.N., Mimoso, J.P.: Generalized energy conditions in extended theories of gravity. Phys. Rev. D 91(12), 124019 (2015)

    ADS  MathSciNet  Google Scholar 

  73. Cattoen, C., Visser, M.: Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities and extremality events, Class. Quantum Gravity 22(23), 4913 (2005)

    MathSciNet  MATH  Google Scholar 

  74. Martin, J., Peter, P.: On the “causality argument” in bouncing cosmologies. Phys. Rev. Lett. 92(6),(2004)

  75. Pinto-Neto, N., Fabris, J.C., Toniato, J.D., Vicente, G.S., Vitenti, S.D.: Vector perturbations in bouncing cosmology. Phys. Rev. D 101(12), 123519 (2020)

    ADS  MathSciNet  Google Scholar 

  76. Coussaert, O., Henneaux, M., van Driel, P.: The asymptotic dynamics of three-dimensional einstein gravity with a negative cosmological constant. Class. Quantum Gravity 12(12), 2961 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Biswas, T., Mazumdar, A.: Inflation with a negative cosmological constant. Phys. Rev. D 80(2), 023519 (2009)

    ADS  Google Scholar 

  78. Sahni, V., Starobinsky, A.: The case for a positive cosmological \( {L}ambda\)-term. Int. J. Mod. Phys. D 9(04), 373–443 (2000)

    ADS  Google Scholar 

  79. Fernandes, P.G.S., Carrilho, P., Clifton, T., Mulryne, D.J.: The 4 D Einstein- Gauss- Bonnet theory of gravity: a review. Class, Quantum Gravity (2022)

    MATH  Google Scholar 

  80. Singh, J.K., Bamba, K., Nagpal, R., Pacif, S.K.J.: Bouncing cosmology in f( R, T) gravity. Phys. Rev. D 97(12), 123536 (2018)

    ADS  MathSciNet  Google Scholar 

  81. Cai, Y.-F., Qiu, T., Zhang, X., Piao, Y.-S., Li, M.: Bouncing universe with quintom matter. J. High Energy Phys. 2007, 071 (2007)

    Google Scholar 

  82. Cai, Y.-F., Qiu, T., Brandenberger, R., Zhang, X.: Nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory. Phys. l Rev. D 80(2), 023511 (2009)

    ADS  Google Scholar 

  83. Agrawal, A.S., Tello-Ortiz, F., Mishra, B., Tripathy, S.K.: Bouncing cosmology in extended gravity and its reconstruction as dark energy model. Fortschr. Phys. 70(1), 2100065 (2022)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Malik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

For the flat FLRW metric (3), the non vanishing Christoffel symbols for this study are obtained as

$$\begin{aligned} \Gamma ^{0}_{ij}=\dot{a}(t)a(t)\delta _{ij}, \Gamma ^{i}_{0j}=\dot{a}(t)a(t)\delta ^{i}_{j}. \end{aligned}$$
(26)

here, \(\delta \) shows the Kronecker symbol. The non vanishing Ricci tensor components are

$$\begin{aligned} R_{00}=-\ddot{a}(t)/a(t)(D-1), R_{jj}=\ddot{a}(t)a(t)+\dot{a}^{2}(t) (D-2). \end{aligned}$$
(27)

The Ricci scalar turns out to be

$$\begin{aligned} R=2\ddot{a}(t)/a(t)(D-1)+(\dot{a}(t)/a(t))(D-1)(D-2). \end{aligned}$$
(28)

Hence the Einstein tensor becomes

$$\begin{aligned} G_{00}=\frac{1}{2}(\dot{a}(t)/a(t))^{2}(D-1)(D-2), \end{aligned}$$
(29)
$$\begin{aligned} G_{jj}=-\ddot{a}(t)a(t)(D-2)-\frac{1}{2}\dot{a}(t)^{2}(D-3)(D-2). \end{aligned}$$
(30)

Here, \(i,j=1,2,3,...,D-1\). The mathematical forms of are as follows

$$\begin{aligned} \rho (t)=\frac{\alpha (D-1) t^2 (2 a_{1}+3 a_{2} t+...)^2}{\left( a_{0}+t^2 (a_{1}+a_{2} t)+...\right) ^2}-\Lambda \end{aligned}$$
(31)
$$\begin{aligned} p(t)=-\frac{\alpha (D-3) t^2 (2 a_{1}+3 a_{2} t+...)^2}{\left( a_{0}+t^2 (a_{1}+a_{2} t)+...\right) ^2}-\frac{4 \alpha (a_{1}+3 a_{2} t+...)}{a_{0}+t^2 (a_{1}+a_{2} t+...)}+\Lambda . \end{aligned}$$
(32)
$$\begin{aligned} \nonumber \rho (t)\pm p(t)= & {} \frac{\alpha (D-1) t^2 (2 a_{1}+3 a_{2} t+...)^2}{\left( a_{0}+t^2 (a_{1}+a_{2} t)+...\right) ^2} \pm \frac{-\alpha (D-3) t^2 (2 a_{1}+3 a_{2} t+...)^2}{\left( a_{0}+t^2 (a_{1}+a_{2} t)+...\right) ^2}\\+ & {} \frac{-4 \alpha (a_{1}+3 a_{2} t+...)}{a_{0}+t^2 (a_{1}+a_{2} t+...)}. \end{aligned}$$
(33)
$$\begin{aligned} \nonumber \rho (t)\pm 3p(t)= & {} \frac{\alpha (D-1) t^2 (2 a_{1}+3 a_{2} t+...)^2}{\left( a_{0}+t^2 (a_{1}+a_{2} t)+...\right) ^2} \pm \frac{-3\alpha (D-3) t^2 (2 a_{1}+3 a_{2} t+...)^2}{\left( a_{0}+t^2 (a_{1}+a_{2} t)+...\right) ^2}\\+ & {} \frac{-12 \alpha (a_{1}+3 a_{2} t+...)}{a_{0}+t^2 (a_{1}+a_{2} t+...)}. \end{aligned}$$
(34)

Appendix B

The energy conditions plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, Z., Bhatti, M.Z., Aman, H. et al. Bouncing Cosmology with 4D-EGB Gravity. Int J Theor Phys 62, 155 (2023). https://doi.org/10.1007/s10773-023-05409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05409-6

Keywords

Navigation