Skip to main content
Log in

Relations Between Observational Entropy and Other Measures Based on Tsallis-q Entropy

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Relations between observational entropy and other measures based on Tsallis-q entropy are presented in this paper. For two-qubit pure states, relations between observational entropy and Tsallis-q entanglement through some monotone function are given. We generalize these relations to the two-qubit mixed state for some range of q. For the case of mixed states, we also study the relations between observational entropy and Tsallis-q entanglement of Assistance (TEoA) for some range of q. An estimate of the mean observational entropy of a pure state through the TEoA of a two-qubit mixed state is determined. These results of this paper reveal the relations between a non-entanglement measure (observational entropy) and an entanglement measure (Tsallis-q entanglement and TEoA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Šafránek, D., Aguirre, A., Schindler, J., Deutsch, J.M.: A brief introduction to observational entropy. Found Phys. 51, 101 (2021)

    Article  MATH  ADS  Google Scholar 

  2. Šafránek, D., Deutsch, J.M., Aguirre, A.: Quantum coarse-grained entropy and thermodynamics. Phys. Rev. A. 99, 010101 (2019)

    Article  Google Scholar 

  3. Šafránek, D., Deutsch, J.M., Aguirre, A.: Quantum coarse-grained entropy and thermalization in closed systems. Phys. Rev. A. 99, 012103 (2019)

    Article  ADS  Google Scholar 

  4. Šafránek, D.: Which entropy increases in isolated quantum systems?. In: 39th SAMAHANG PISIKA NG PILIPINAS Physics Conference and Annual Meeting, 20-22. https://www.youtube.com/watch?v=hUwBVn40miU&t=763s (2021)

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  6. Wilde, M.M.: Quantum Information Theory, 2nd edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  7. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. L. 78, 2275–2279 (1997)

    Article  MATH  ADS  Google Scholar 

  8. Strasberg, P., Winter, A.: First and second law of quantum thermodynamics: a consistent derivation based on a microscopic definition of entropy. Phys. Rev. X. 2, 030202 (2021)

    Google Scholar 

  9. Schindler, J., Šafránek, D., Aguirre, A.: Quantum correlation entropy. Phys. Rev. A. 102, 052407 (2020)

    Article  ADS  Google Scholar 

  10. Zhou, X., Zheng, Z.J.: Relations between the observational entropy and rényi information measures. Quan. Infor. Pro. 022, 03570 (2022)

    Google Scholar 

  11. Zhou, X., Zheng, Z.J.: Relations between the quantum correlation entropy and quantum discord for X-states in multipartite systems. Eur. Phys. J. Plus 137, 625 (2022)

    Article  Google Scholar 

  12. Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow. Phys. Today 46(9), 32 (1993)

    Article  Google Scholar 

  13. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MATH  ADS  Google Scholar 

  14. Vidal, G., Mod, J.: Entanglement monotones. Opt. 47, 355 (2000)

    Google Scholar 

  15. Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev A. 81, 062328 (2010)

    Article  ADS  Google Scholar 

  16. Abe, S.: Stability of Tsallis entropy and instabilities of rényi and normalized Tsallis entropies: a basis for q-exponential distributions. Phys. Rev. E. 66, 046134 (2002)

    Article  ADS  Google Scholar 

  17. Rajagopal, A.K., Rendell, R.W.: Classical statistics inherent in a quantum density matrix. Phys. Rev. A 72, 022322 (2005)

    Article  ADS  Google Scholar 

  18. Abe, S., Rajagopal, A.K.: Nonadditive conditional entropy and its significance for local realism. Physica A. 289, 157 (2001)

    Article  MATH  ADS  Google Scholar 

  19. Tsallis, C., Lloyd, S., Baranger, M.: Peres criterion for separability through nonextensive entropy. Phys. Rev. A 63, 042104 (2001)

    Article  ADS  Google Scholar 

  20. Rossignoli, R., Canosa, N.: Generalized entropic criterion for separability. Phys. Rev. A 66, 042306 (2002)

    Article  ADS  Google Scholar 

  21. Vidiella-Barranco, A.: Entanglement and nonextensive statistics. Phys. Lett. A 260, 335 (1999)

    Article  MATH  ADS  Google Scholar 

  22. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  MATH  ADS  Google Scholar 

  23. Kim, J.S.: Tsallis entropy general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev A 94, 062338 (2016)

    Article  ADS  Google Scholar 

  24. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  MATH  ADS  Google Scholar 

  25. Hill, S.A., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  26. Bosyk, G.M., Zozor, S., Holik, F., Portesi, M., Lamberti, P.W.: A family of generalized quantum entropies: definition and properties. Quantum Inf. Process. 15, 3393–8C3420 (2016)

    Article  MATH  ADS  Google Scholar 

  27. Liang, Y.C., Yeh, Y.H., Mendonca, P., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82 (7), 076001 (2019)

    Article  ADS  Google Scholar 

  28. Wang, X.G., Yu, C.S., Yi, X.X.: An alternative quantum fidelity for mixed states of qudits. Physics Letters A. 373, 58–60 (2008)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

We appreciate Zhu-Jun Zheng and Hai-Tao Ma for their useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X. Relations Between Observational Entropy and Other Measures Based on Tsallis-q Entropy. Int J Theor Phys 62, 12 (2023). https://doi.org/10.1007/s10773-022-05272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05272-x

Keywords

Navigation