Skip to main content
Log in

Probing Quantum Correlations in a Hybrid Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In quantum simulations and experiments on optomechanical cavities, coherence control is a challenging issue. We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement. Photon hopping is employed to establish couplings between optical modes, while phonon tunneling is utilized to establish couplings between mechanical resonators. Both cavities are driven by classical light. We explore the influences of coupling strengths of the quantum correlations generated inside each cavity using two types of quantum measures: logarithmic negativity and quantum steering. This analysis will reveal the significance of these quantum metrics as well as their various aspects in the Doppler regime. We also investigate stability conditions based on coupling strengths. Therefore, it is possible to quantify the degree of intracavity entanglement. By choosing the appropriate photon and phonon hopping strengths, the generated entanglement can be enhanced. A set of parameters based on the currently available experimental data was used in the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aspelmeyer, M., Schwab, K.: . New J. Phys. 10(9), 095001 (2008)

    Article  ADS  Google Scholar 

  2. Blencowe, M.: . Phys. Rep. 395(3), 159 (2004)

    Article  ADS  Google Scholar 

  3. Genes, C., Mari, A., Vitali, D., Tombesi, P.: . Adv. At. Mol. Opt. Phys. 57, 33 (2009)

    Article  ADS  Google Scholar 

  4. Aspelmeyer, M., Gröblacher, S., Hammerer, K., Kiesel, N.: . JOSA B 27(6), A189 (2010)

    Article  ADS  Google Scholar 

  5. Clerk, A.A., Marquardt, F.: Basic theory of cavity optomechanics. (2014).https://doi.org/10.1007/978-3-642-55312-7_2

  6. Liu, Y.C., Xiao, Y.F., Chen, Y.L., Yu, X.C., Gong, Q.: Phys. Rev. Lett. 111(8), 083601 (2013)

  7. Yan, Y., Gu, W., Li, G.: SCIENCE CHINA Physics. Mech Astron 58(5), 1 (2015)

    Article  Google Scholar 

  8. Yan, X.B., Deng, Z.J., Tian, X.D., Wu, J.H.: . Opt Express 27(17), 24393 (2019)

    Article  ADS  Google Scholar 

  9. LSC, L.: The laser interferometer gravitational-wave observatory. Tech. rep. LIGO-p070082-01 (2007)

  10. Purdy, T.P., Peterson, R.W., Regal, C.: . Science 339(6121), 801 (2013)

    Article  ADS  Google Scholar 

  11. jae Lee, H., Namgung, W., Ahn, D.: . Phys. Lett. A 338(3-5), 192 (2005). https://doi.org/10.1016/j.physleta.2005.03.010

    Article  ADS  Google Scholar 

  12. Bougouffa, S., Ficek, Z.: Phys. Scr. 2012(T147), 014005 (2012)

  13. Bougouffa, S., Ficek, Z.: .. In: Conference on Coherence and Quantum Optics (Optical Society of America), pp. M6–53 (2013)

  14. Sete, E.A., Eleuch, H., Ooi, C.H.R.: . J. Opt. Soc. Am. B 31 (11), 2821 (2014). https://doi.org/10.1364/JOSAB.31.002821

    Article  ADS  Google Scholar 

  15. Sete, E.A., Eleuch, H.: . Phys. Rev. A 91(3), 032309 (2015)

    Article  ADS  Google Scholar 

  16. Nielson, M.A., Chuang, I.L.: Quant. Comput. Quantum Inf. (2000)

  17. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: . Phys. Rev. Lett. 98(23), 230501 (2007)

    Article  ADS  Google Scholar 

  18. Giovannetti, V., Lloyd, S., Maccone, L.: . Nature photonics 5(4), 222 (2011)

    Article  ADS  Google Scholar 

  19. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: . Rev. Mod. Phys. 84(4), 1655 (2012)

    Article  ADS  Google Scholar 

  20. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: . Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  Google Scholar 

  21. Schrödinger, E.: Math. Proc. Cambridge Philos. Soc., vol. 31 (Cambridge University Press, 1935), vol. 31, pp. 555-563 (1935)

  22. Skrzypczyk, P., Navascués, M., Cavalcanti, D.: . Phys. Rev. Lett. 112(18), 180404 (2014)

    Article  ADS  Google Scholar 

  23. Zhou, L., Han, Y., Jing, J., Zhang, W.: . Phys. Rev. A 83 (5), 052117 (2011)

    Article  ADS  Google Scholar 

  24. Nunnenkamp, A., Børkje, K., Girvin, S.M.: . Phys. Rev. Lett. 107(6), 063602 (2011)

    Article  ADS  Google Scholar 

  25. Purdy, T.: . Science 339, 801 (2013)

    Article  ADS  Google Scholar 

  26. Bai, C.H., Wang, D.Y., Wang, H.F., Zhu, A.D., Zhang, S.: Sci. Rep. 6(1) (2016). https://doi.org/10.1038/srep33404

  27. Bougouffa, S., Ficek, Z.: Phys. Rev. A. 93(6), 063848 (2016)

  28. Liang, X., Guo, Q., Yuan, W.: . Int. J. Theor. Phys. 58(1), 58 (2019). https://doi.org/10.1007/s10773-018-3909-x

    Article  Google Scholar 

  29. Ge, W., Al-Amri, M., Nha, H., Zubairy, M.S.: . Phys. Rev. A 88(5), 052301 (2013)

    Article  ADS  Google Scholar 

  30. Ge, W., Zubairy, M.S.: . Phys. Rev. A 91(1), 013842 (2015)

    Article  ADS  Google Scholar 

  31. Ge, W., Zubairy, M.S.: . Phys. Scr. 90(7), 074015 (2015)

    Article  ADS  Google Scholar 

  32. Si, L.G., Xiong, H., Zubairy, M.S., Wu, Y.: . Phys. Rev. A 95(3), 033803 (2017)

    Article  ADS  Google Scholar 

  33. Asiri, S., Liao, Z., Zubairy, M.S.: . Phys. Scr. 93(12), 124002 (2018)

    Article  ADS  Google Scholar 

  34. Sete, E.A., Eleuch, H.: . Phys. Rev. A 85, 043824 (2012). https://doi.org/10.1103/PhysRevA.85.043824

    Article  ADS  Google Scholar 

  35. El Qars, J., Daoud, M., Laamara, R.A.: . Eur. Phys. J. D 71 (5), 122 (2017)

    Article  ADS  Google Scholar 

  36. Kronwald, A., Marquardt, F., Clerk, A.A.: . New J. Phys. 16 (6), 063058 (2014). https://doi.org/10.1088/1367-2630/16/6/063058

    Article  ADS  Google Scholar 

  37. Yousif, T., Zhou, W., Zhou, L.: . J. Mod. Opt. 61(14), 1180 (2014). https://doi.org/10.1080/09500340.2014.927016

    Article  ADS  Google Scholar 

  38. Liao, C.G., Shang, X., Xie, H., Lin, X.M.: . Opt Express 30(7), 10306 (2022)

    Article  ADS  Google Scholar 

  39. Lin, W., Liao, C.G.: . Eur. Phys. J. Plus 136(3), 1 (2021)

    Article  ADS  Google Scholar 

  40. Ameri, V., Eghbali-Arani, M., Rafiee, M.: 18. https://doi.org/10.1007/s11128-019-2465-5 (2019)

  41. Qiao, G.J., Gao, H.X., Liu, H.D., Yi, X.X.: . Sci. Rep. 8 (1), 1 (2018). https://doi.org/10.1038/s41598-018-33903-z

    ADS  Google Scholar 

  42. Marchese, M.M., Belenchia, A., Pirandola, S., Paternostro, M.: . New J. Phys. 23(4), 043022 (2021)

    Article  ADS  Google Scholar 

  43. Li, W., Li, C., Song, H.: Quant. Inf. Process. 16 (2017). https://doi.org/10.1007/s11128-017-1517-y

  44. Paule, G.M.: Transient synchronization and quantum correlations. Springer (2018). https://doi.org/10.1007/978-3-319-93964-3_4

  45. Jähne, K., Genes, C., Hammerer, K., Wallquist, M., Polzik, E.S., Zoller, P.: . Phys. Rev. A 79(6), 063819 (2009)

    Article  ADS  Google Scholar 

  46. Jurcevic, P., Javadi-Abhari, A., Bishop, L.S., Lauer, I., Bogorin, D.F., Brink, M., Capelluto, L., Günlük, O., Itoko, T., Kanazawa, N., et al.: . Quantum Sci. Technol. 6(2), 025020 (2021)

    Article  ADS  Google Scholar 

  47. Asjad, M., Tombesi, P., Vitali, D.: . Phys. Rev. A 94(5), 052312 (2016)

    Article  ADS  Google Scholar 

  48. Plenio, M.B.: . Phys. Rev. Lett. 95(9), 090503 (2005). https://doi.org/10.1103/physrevlett.95.090503

    Article  ADS  Google Scholar 

  49. Ludwig, M., Marquardt, F.: . Phys. Rev. Lett. 111(7), 073603 (2013)

    Article  ADS  Google Scholar 

  50. Giovannetti, V., Vitali, D.: . Phys. Rev. A 63(2), 023812 (2001)

    Article  ADS  Google Scholar 

  51. Rehaily, A.A., Bougouffa, S.: . Int. J. Theor. Phys. 56(5), 1399 (2017). https://doi.org/10.1007/s10773-017-3280-3

    Article  Google Scholar 

  52. Gardiner, C.W.: . Phys. Rev. Lett. 56(18), 1917 (1986). https://doi.org/10.1103/physrevlett.56.1917

    Article  ADS  Google Scholar 

  53. Benguria, R., Kac, M.: . Phys. Rev. Lett. 46(1), 1 (1981). https://doi.org/10.1103/physrevlett.46.1

    Article  MathSciNet  ADS  Google Scholar 

  54. Zhang, Q., Zhang, X., Liu, L.: Phys. Rev. A 96(4) (2017). https://doi.org/10.1103/physreva.96.042320

  55. Gao, B., xiang Li, G., Ficek, Z.: Phys. Rev. A 94(3). https://doi.org/10.1103/physreva.94.033854 (2016)

  56. Parkins, A.: . Phys. Rev. A 42(11), 6873 (1990)

    Article  ADS  Google Scholar 

  57. Sun, F., Mao, D., Dai, Y., Ficek, Z., He, Q., Gong, Q.: . New J. Phys. 19(12), 123039 (2017)

    Article  ADS  Google Scholar 

  58. Li, W., Li, C., Song, H.: . Phys. Rev. E 93(6), 062221 (2016)

    Article  ADS  Google Scholar 

  59. Braunstein, S.L., Pati, A.K.: Quantum information with continuous variables (Springer Science & Business Media) (2012)

  60. Li, W., Li, C., Song, H.: 48, 035503 (2015). https://doi.org/10.1088/0953-4075/48/3/035503

  61. Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Phys. Rev. A 77(3). https://doi.org/10.1103/physreva.77.033804 (2008)

  62. Vitali, D., Gigan, S., Ferreira, A., Böhm, H., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: . Phys. Rev. Lett. 98(3), 030405 (2007)

    Article  ADS  Google Scholar 

  63. Mari, A., Vitali, D.: ., vol. 78 (2008). https://doi.org/10.1103/physreva.78.062340

  64. Du, L., Fan, C.H., Zhang, H.X., Wu, J.H.: . Scient. Rep. 7(1), 1 (2017)

    Article  ADS  Google Scholar 

  65. Li, W., Li, C., Song, H.: . J. Phys. B: At. Mol. Opt. Phys. 48 (3), 035503 (2015)

    Article  ADS  Google Scholar 

  66. Mari, A., Eisert, J.: . New J. Phys. 14(7), 075014 (2012)

    Article  ADS  Google Scholar 

  67. Peres, A.: . Phys. Rev. Lett. 77(8), 1413 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  68. Guo, Y., Li, K., Nie, W., Li, Y.: . Phys. Rev. A 90(5), 053841 (2014)

    Article  ADS  Google Scholar 

  69. Sheng, J., Yang, C., Wu, H.: . Sci. Adv. 7(50), eabl7740 (2021)

    Article  ADS  Google Scholar 

  70. Ockeloen-Korppi, C., Damskägg, E., Paraoanu, G.S., Massel, F., Sillanpää, M.: . Phys. Rev. Lett. 121(24), 243601 (2018)

    Article  ADS  Google Scholar 

  71. Chille, V., Quinn, N., Peuntinger, C., Croal, C., Mišta, L., Marquardt, C. Jr., Leuchs, G., Korolkova, N.: Phys Rev A 91(5) (2015). https://doi.org/10.1103/PhysRevA.91.050301

  72. Bougouffa, S.: . Opt. Commun. 283(14), 2989 (2010)

    Article  ADS  Google Scholar 

  73. Plenio, M.B.: Phys. Rev. Lett. 95(9) (2005). https://doi.org/10.1103/PhysRevLett.95.090503

  74. Vidal, G., Werner, R.F.: . Phys. Rev. A Rev. A 65(3), 032314 (2002). https://doi.org/10.1103/physreva.65.032314

    Article  ADS  Google Scholar 

  75. Hartmann, M.J., Plenio, M.B.: . Phys. Rev. Lett. 101(20), 200503 (2008)

    Article  ADS  Google Scholar 

  76. Bougouffa, S., Ficek, Z.: . Phys. Rev. A 102(2020), 043720 (2020). https://doi.org/10.1103/PhysRevA.102.043720

    Article  MathSciNet  ADS  Google Scholar 

  77. Al-Awfi, S., Al-Hmoud, M., Bougouffa, S.: . EPL (Europhysics Lett.) 123(1), 14005 (2018). https://doi.org/10.1209/0295-5075/123/14005

    Article  ADS  Google Scholar 

  78. Kogias, I., Lee, A.R., Ragy, S., Adesso, G.: . Phys. Rev. Lett. 114(6), 060403 (2015)

    Article  ADS  Google Scholar 

  79. Renyi, A.: .. In: Proceedings of the fourth berkeley symposium on mathematical statistics and probability, pp. 547-561 (Univ of California Press), (1961)

  80. Wilde, M.M.: Quantum information theory (Cambridge University Press) (2013)

  81. Adesso, G., Girolami, D., Serafini, A.: . Phys. Rev. Lett. 109 (19), 190502 (2012)

    Article  ADS  Google Scholar 

  82. Händchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: . Nat Photonics 6(9), 596 (2012)

    Article  ADS  Google Scholar 

  83. Sun, L., Shi, J., Zhang, K., Gu, W., Ficek, Z., Yang, W.: . Alexandria Eng. J. 61(12), 9297 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University, Saudi Arabia, Grant No. (20-13-12-004). We thank Z. Ficek for the valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed and accepted responsibility for this submitted manuscript’s entire content and approved submission.

Corresponding author

Correspondence to Smail Bougouffa.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougouffa, S., Al-Hmoud, M. & Hakami, J.W. Probing Quantum Correlations in a Hybrid Optomechanical System. Int J Theor Phys 61, 190 (2022). https://doi.org/10.1007/s10773-022-05175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05175-x

Keywords

Navigation