Skip to main content
Log in

T-Count Optimized Wallace Tree Integer Multiplier for Quantum Computing

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum circuits for performing an arithmetic operation are necessary for the implementation of quantum computing peripherals. An effective quantum circuit can be developed using a minimum amount of Clifford + T gates, as the implementation of Clifford + T quantum gates is more expensive than the other quantum gates. A quantum full adder (QFA) circuit for quantum computing hardware is proposed in this work. The proposed QFA circuit is optimized for T-count using a single CCNOT (Toffoli) gate. This work also focuses on implementing a quantum integer multiplication circuit using the proposed QFA to achieve better T-count savings than the existing counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used for this work are available from the corresponding author upon reasonable request.

References

  1. Kawano, Y., Michele, M.: Theory of Quantum Computation, Communication, and cryptography: Third Workshop, TQC 2008 Tokyo, Japan, January 30-February 1, 2008, Revised Selected papers, vol. 5106. Springer (2008)

  2. Munoz-Coreas, E., Thapliyal, H.: T-count and qubit optimized quantum circuit design of the non-restoring square root algorithm. ACM J. Emerg. Technol. Comput. Syst. (JETC) 14(3), 1–15 (2018)

    Article  Google Scholar 

  3. Montanaro, A.: Quantum pattern matching fast on average. Algorithmica 77(1), 16–39 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Haghparast, M., Mohammadi, M., Navi, K., Eshghi, M.: Optimized reversible multiplier circuit. J. Circuits Syst. Comput. 18(02), 311–323 (2009)

    Article  MATH  Google Scholar 

  5. Adesanya, S.O., Onanaye, A.S., Adeyemi, O.G., Rahimi-Gorji, M., Alarifi, I.M.: Evaluation of heat irreversibility in couple stress falling liquid films along heated inclined substrate. J. Clean. Prod. 239, 117608 (2019)

    Article  Google Scholar 

  6. Seikh, A.H., Akinshilo, A.T., Taheri, M.H., Rahimi-Gorji, M., Alharthi, N, Khan, I., Khan, A.R.: Influence of the nanoparticles and uniform magnetic field on the slip blood flows in arterial vessels. Physica Scripta 94(12), 125218 (2019)

    Article  ADS  Google Scholar 

  7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Liang, J.-M., Shen, S.-Q., Li, M.: Quantum algorithms and circuits for linear equations with infinite or no solutions. Int. J. Theor. Phys. 58(8), 2632–2640 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Babbush, R., Berry, D.W., Kivlichan, I.D., Wei, A.Y., Love, P.J., Aspuru-Guzik, A.: Exponentially more precise quantum simulation of fermions in second quantization. New J. Phys. 18(3), 033032 (2016)

    Article  ADS  MATH  Google Scholar 

  10. Reiher, M., Wiebe, N., Svore, K.M., Wecker, D., Troyer, M.: Elucidating reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci. 114 (29), 7555–7560 (2017)

    Article  ADS  Google Scholar 

  11. Haener, T., Soeken, M., Roetteler, M., Svore, K.M.: Quantum circuits for floating-point arithmetic. In: International Conference on Reversible Computation, pp. 162–174. Springer (2018)

  12. Paler, A., Devitt, S.J.: An introduction into fault-tolerant quantum computing. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 1–6 (2015)

  13. Polian, I., Fowler, A.G.: Design automation challenges for scalable quantum architectures. In: 2015 52Nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2015)

  14. Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of clifford+ t circuits via matroid partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33(10), 1476–1489 (2014)

    Article  Google Scholar 

  15. Devitt, S.J., Stephens, A.M., Munro, W.J., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat. Commun. 4(1), 1–8 (2013)

    Article  Google Scholar 

  16. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(6), 818–830 (2013)

    Article  Google Scholar 

  17. Nam, Y., Su, Y., Maslov, D.: Approximate quantum fourier transform with o (n log (n)) t gates. NPJ Quantum Inform. 6(1), 1–6 (2020)

    Article  Google Scholar 

  18. Goto, H.: Resource requirements for a fault-tolerant quantum fourier transform. Phys. Rev. A 90(5), 052318 (2014)

    Article  ADS  Google Scholar 

  19. Cody Jones, N., Whitfield, J.D., McMahon, P.L., Yung, M.-H., Van Meter, R., Aspuru-Guzik, A., Yamamoto, Y.: Faster quantum chemistry simulation on fault-tolerant quantum computers. New J. Phys. 14(11), 115023 (2012)

    Article  ADS  MATH  Google Scholar 

  20. Dutta, S., Bhattacharjee, D., Chattopadhyay, A.: Quantum circuits for toom-cook multiplication. Phys. Rev. A 98(1), 012311 (2018)

    Article  ADS  Google Scholar 

  21. Gayathri, S.S.., Kumar, R., Dhanalakshmi, S., Dooly, G., Duraibabu, D.B.: T-count optimized quantum circuit designs for single-precision floating-point division. Electronics 10(6), 703 (2021)

    Article  Google Scholar 

  22. Jayashree, H.V., Thapliyal, H., Arabnia, H.R., Agrawal, V.K.: Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J. Supercomput. 72(4), 1477–1493 (2016)

    Article  Google Scholar 

  23. Zhou, X., Leung, D.W., Chuang, I.L.: Methodology for quantum logic gate construction. Phys. Rev. A 62(5), 052316 (2000)

    Article  ADS  Google Scholar 

  24. Michael Miller, D., Soeken, M., Drechsler, R.: Mapping Ncv circuits to optimized clifford+T circuits. In: International Conference on Reversible Computation, pp. 163–175. Springer (2014)

  25. Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the t-count. arXiv:1308.4134 (2013)

  26. Haghparast, M., Monfared, A.T.: Designing novel quaternary quantum reversible subtractor circuits. Int. J. Theor. Phys. 57(1), 226–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cody Jones, N., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2(3), 031007 (2012)

    Google Scholar 

  28. Cheng, K.-W., Tseng, C.-C.: Quantum full adder and subtractor. Electron. Lett. 38(22), 1343–1344 (2002)

    Article  ADS  Google Scholar 

  29. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184 (2004)

  30. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  31. Patel, Y.: Communication and Control for Quantum Circuits. PhD thesis, UC Berkeley (2010)

    Google Scholar 

  32. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. arXiv:0910.2530 (2009)

  33. Babu, H.Md.H.: Cost-efficient design of a quantum multiplier–accumulator unit. Quantum Inf. Process 16(1), 30 (2017)

    Article  ADS  MATH  Google Scholar 

  34. Lin, C.-C., Chakrabarti, A., Jha, N.K.: Qlib: Quantum module library. ACM J. Emerg. Technol. Comput. Syst. (JETC) 11(1), 1–20 (2014)

    Google Scholar 

  35. Muñoz-Coreas, E., Thapliyal, H.: T-count optimized design of quantum integer multiplication. arXiv:1706.05113 (2017)

  36. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Şahin, E.: Quantum arithmetic operations based on quantum fourier transform on signed integers. arXiv:2005.00443 (2020)

  38. Li, H.-S., Fan, P., Xia, H., Peng, H.: Gui-lu Long. Efficient quantum arithmetic operation circuits for quantum image processing SCIENCE CHINA Physics. Mechanics & Astronomy 63, 1–13 (2020)

    Google Scholar 

  39. Wallace, C.S.: A suggestion for a fast multiplier. IEEE Transactions on Electronic Computers, vol. EC-13, no. 1, pp. 14–17 (1964)

  40. Nagamani, A.N., Agrawal, V.K.: Design of Quantum Cost and Delay-Optimized Reversible Wallace Tree Multiplier Using Compressors. In: Artificial Intelligence and Evolutionary Algorithms in Engineering Systems, pp. 323–331. Springer (2015)

  41. Thapliyal, H., Srinivas, M.B.: Novel Reversibletsg’gate and Its Application for Designing Components of Primitive Reversible/Quantum Alu. In: 2005 5Th International Conference on Information Communications & Signal Processing, pp. 1425–1429. IEEE (2005)

  42. PourAliAkbar, E., Mosleh, M.: An efficient design for reversible wallace unsigned multiplier. Theor. Comput. Sci. 773, 43–52 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Ethics declarations

Consent for Publication

Yes

Conflict of Interests

The authors declare no conflicts of interest

Additional information

Consent to participate

Yes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, S.S., Kumar, R., Dhanalakshmi, S. et al. T-Count Optimized Wallace Tree Integer Multiplier for Quantum Computing. Int J Theor Phys 60, 2823–2835 (2021). https://doi.org/10.1007/s10773-021-04864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04864-3

Keywords

Navigation