Skip to main content
Log in

Designing Novel Quaternary Quantum Reversible Subtractor Circuits

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Reversible logic synthesis is an important area of current research because of its ability to reduce energy dissipation. In recent years, multiple valued logic has received great attention due to its ability to reduce the width of the reversible circuit which is a main requirement in quantum technology. Subtractor circuits are between major components used in quantum computers. In this paper, we will discuss the design of a quaternary quantum reversible half subtractor circuit using quaternary 1-qudit, 2-qudit Muthukrishnan-Stroud and 3-qudit controlled gates and a 2-qudit Generalized quaternary gate. Then a design of a quaternary quantum reversible full subtractor circuit based on the quaternary half subtractor will be presenting. The designs shall then be evaluated in terms of quantum cost, constant input, garbage output, and hardware complexity. The proposed quaternary quantum reversible circuits are the first attempt in the designing of the aforementioned subtractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Perkowski, M., Al-Rabadi, A., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A., Azad Khan, M., Coppola, A., Yanushkevich, S., Shmerko, V., Jozwiak, L.: A general decomposition for reversible logic. In: Proceedings of RM, pp. 119–138 (2001)

  2. Perkowski, M., Kerntopf, P.: Reversible logic. Invited tutorial. In: Proceedings of EURO-MICRO (2001)

  3. Babu, H.M.H., Chowdhury, A.R.: Design of a reversible binary coded decimal adder by using reversible 4-bit parallel adder. In: 18th International Conference on VLSI Design Held Jointly with 4th International Conference on Embedded Systems Design, pp. 255–260. IEEE (2005)

  4. Landaurer, R.: Irreversibility and heat generation in the computational process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  Google Scholar 

  5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

  6. Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9(1), 62–69 (2010)

    Article  ADS  Google Scholar 

  7. Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Mach–Zehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010)

    Article  ADS  Google Scholar 

  8. Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(4), 14 (2010)

    Google Scholar 

  9. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge University Press) (2000)

  11. Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85(15), 3313 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bourennane, M., Karlsson, A., Björk, G.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64(1), 012306 (2001)

    Article  ADS  Google Scholar 

  13. Greentree, A.D., Schirmer, S.G., Green, F., Hollenberg, L.C., Hamilton, A.R., Clark, R.G.: Maximizing the Hilbert space for a finite number of distinguishable quantum states. Phys. Rev. Lett. 92(9), 097901 (2004)

    Article  ADS  Google Scholar 

  14. Bundalo, D., Bundalo, Z., Ðorđjević, B: Design of quaternary logic systems and circuits. Facta Univ-series: Electronics Energetics 18(1), 45–56 (2005)

    Article  Google Scholar 

  15. Miller, D.M., Thornton, M.A.: Multiple valued logic: concepts and representations. Synth. Lect. Digit. Circ. Syst. 2(1), 1–127 (2007)

    Google Scholar 

  16. Curtis, E., Perkowski, M.: A transformation based algorithm for ternary reversible logic synthesis using universally controlled ternary gates. In: Proceedings of IWLS, pp. 345–352, vol. 2004 (2004)

  17. Denler, N., Yen, B., Perkowski, M., Kerntopf, P.: Synthesis of reversible circuits from a subset of Muthukrishnan-Stroud quantum realizable multi-valued gates. In: Proceedings of IWLS, pp. 321–328 (2004)

  18. Khan, M.H., Perkowski, M.A., Khan, M.R., Kerntopf, P.: Terary GFSOP minimization using kronecker decision diagrams and their synthesis with quantum cascades. J. Mult. Valued Logic Soft Comput. 11(5/6), 567 (2005)

    MATH  Google Scholar 

  19. Khan, M.H., Perkowski, M.A., Khan, M.R.: Ternary Galois field expansions for reversible logic and Kronecker decision diagrams for ternary GFSOP minimization [Galois field sum of products]. In: 34th International Symposium on Multiple-Valued Logic, 2004. Proceedings, pp. 58–67. IEEE (2004)

  20. Khan, M.H., Perkowski, M.: Quantum realization of ternary encoder and decoder. In: Proceedings of the 7th International Symposium Representations and Methodology of Future Computing Technologies (RM2005), Tokyo, Japan (2005)

  21. Khan, M.H.: Design of reversible/quantum ternary multiplexer and demultiplexer. Eng. Lett. 13(2), 65–69 (2006)

    Google Scholar 

  22. Monfared, A.T., Haghparast, M.: Design of new quantum/reversible ternary subtractor circuits. J. Circ. Syst. Comput. 25(02), 1650014 (2016)

    Article  Google Scholar 

  23. Monfared, A.T., Haghparast, M.: Novel design of quantum/reversible ternary comparator circuits. J. Comput. Theor. Nanosci. 12(12), 5670–5673 (2015)

    Article  Google Scholar 

  24. Houshmand, P., Haghparast, M.: Design of a novel quantum reversible ternary up-counter. Int. J. Quantum Inf. 13(05), 1550038 (2015)

    Article  MATH  Google Scholar 

  25. Mandal, S.B., Chakrabarti, A., Sur-Kolay, S.: Synthesis techniques for ternary quantum logic. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, pp. 218–223. IEEE (2011)

  26. Khan, M.M.M., Biswas, A.K., Chowdhury, S., Tanzid, M., Mohsin, K.M., Hasan, M., Khan, A.I.: Quantum realization of some quaternary circuits. In: TENCON, vol. 2008, pp. 19–21 (2008)

  27. Khan, M.H.: Reversible realization of quaternary decoder, multiplexer, and demultiplexer circuits. In: 38th International Symposium on Multiple Valued Logic (ismvl 2008), pp. 208–213. IEEE (2008)

  28. Jahangir, I., Das, A.: On the design of quaternary comparators. In: 2010 13th International Conference on Computer and Information Technology (ICCIT), pp. 241–246. IEEE (2010)

  29. Khan, M.H.: Synthesis of quaternary reversible/quantum comparators. J. Syst. Archit. 54(10), 977–982 (2008)

    Article  Google Scholar 

  30. Khan, M.H.: Scalable architectures for design of reversible quaternary multiplexer and demultiplexer circuits. In: 2009 39th International Symposium on Multiple-Valued Logic (pp. 343–348). IEEE (2009)

  31. Khan, M.H.: A recursive method for synthesizing quantum/reversible quaternary parallel adder/ subtractor with look-ahead carry. J. Syst. Archit. 54(12), 1113–1121 (2008)

    Article  Google Scholar 

  32. Mandal, S.B., Chakrabarti, A., Sur-Kolay, S.: A synthesis method for quaternary quantum logic circuits. In: Progress in VLSI Design and Test, pp. 270–280. Springer, Berlin (2012)

  33. Haghparast, M., Monfared, A.T.: Novel quaternary quantum decoder, multiplexer and demultiplexer circuits. Int. J. Theor. Phys. 56(5), 1694–1707 (2017)

    Article  MATH  Google Scholar 

  34. Haghparast, M., Dousttalab, N.: Design of new reversible quaternary flip-flops. International Journal of Quantum Information 15(04), 1750024 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Khan, M.H., Perkowski, M.A.: GF (4) based synthesis of quaternary reversible/quantum logic circuits. In: 37th International Symposium on Multiple-Valued Logic (ISMVL’07), pp. 11–11. IEEE (2007)

  36. Muthukrishnan, A., Stroud, C.R.: Multivalued logic gates for quantum computation. Phys. Rev. A 62(5), 052309 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Haghparast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghparast, M., Monfared, A.T. Designing Novel Quaternary Quantum Reversible Subtractor Circuits. Int J Theor Phys 57, 226–237 (2018). https://doi.org/10.1007/s10773-017-3556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3556-7

Keywords

Navigation