Skip to main content
Log in

A One-Round Quantum Mutual Authenticated Key Agreement Protocol with Semi-Honest Server Using Three-Particle Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a mutual authenticated quantum key agreement scheme based on three-particle entangled states, which can achieve both completely secure and more efficient. In our scheme, the pre-shared keys are classical bit strings between the semi-honest server (SHS) and the client (Alice or Bob), so they are kept and use to authenticate each other easily. More important, by the SHS’s helping with three-particle entangled states, SHS and Alice/Bob can authenticate each other, and at the same time anyone else cannot get the session key between Alice and Bob even for SHS. The proposed scheme has the properties of completeness, information theoretic security, non-repudiation and unforgeability. Its information-theoretic security is ensured by quantum indistinguishability mechanics. Compared with the related works, our proposed scheme can increase efficiency factors η1 and η2 to 50% and 80% respectively in one communication round.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, p. 175. IEEE, New York (1984)

    Google Scholar 

  2. Xiangjun, X., Wang, Z., He, Q., Yang, Q., Li, F.: New Public-key Quantum Signature Scheme with Quantum One-Way Function[J]. Int. J. Theor. Phys. 58(10), 3282–3294 (2019)

  3. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances[J]. Science. 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  4. Curty, M., Lewenstein, M., Lutkenhaus, N.: Entanglement as a precondition for secure quantum key distribution[J]. Phys. Rev. Lett. 92(21), 217903 (2004)

    Article  ADS  Google Scholar 

  5. Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE Trans. Dependable Secure Comput. 4(1), 71–80 (2007)

    Article  Google Scholar 

  6. Guan, D.J., Wang, Y.-J., Zhuang, E.S.: A practical protocol for three-party authenticated quantum key distribution. Quantum Inf Process. 13, 2355–2374 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cao, G., Chen, C., Jiang, M.: A Scalable and Flexible Multi-User Semi-Quantum Secret Sharing. ICTCE 2018 Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering. pp. 28–32, November, (2018)

  8. Clancy, T.C., McGwier, R.W.: TUTORIAL: Post-Quantum Cryptography and 5G Security, May 15–17, 2019. ACM ISBN 978–1–4503-6726-4/19/05. https://doi.org/10.1145/3317549.3324882

  9. Prousalis, K., Konofaos, N.: Improving the Sequence Alignment Method by Quantum Multi-Pattern Recognition, Proceeding SETN '18, Proceedings of the 10th Hellenic Conference on Artificial Intelligence, No. 50, pp. 1–4, July, (2018)

  10. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A. 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Man, Z.-X., Xia, Y.-J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680 (2006)

    Article  ADS  Google Scholar 

  12. Xia, Y., et al.: Controlled secure quantum dialogue using a pure entangled GHZ states. Commun. Theor. Phys. 48(5), 841 (2007)

    Article  ADS  Google Scholar 

  13. Xia, Y.-J., Man, Z.-X.: Controlled quantum n-party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ye, T.-Y., Jiang, L.-Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  Google Scholar 

  15. Chang, C.-H., Luo, Y.P., Yang, C.W., Hwang, T.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kao, S.-H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process. 15(10), 4313–4324 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kao, S.-H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process. 16(5), 139 (2017)

    Article  ADS  Google Scholar 

  18. Jiang, W., Clifton, C.: A secure distributed framework for achieving k-anonymity. Int. J. Very Large Data Bases. 15(4), 316–333 (2006)

    Article  Google Scholar 

  19. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. U. S. A. 46(4), 570–579 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  20. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Modern Phys., vcol. 74, pp. 145–190, 2002

  21. Wootters, W.K., Zurek, W.H.: A Single Quantum Cannot Be Cloned. Nature. 299, 802–803 (1992)

    Article  ADS  Google Scholar 

  22. Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)

    Article  Google Scholar 

  23. Li, Q., Chan, W.-H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A. 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  24. Yang, L., Yang, B., Pan, J.: Quantum public-key encryption protocols with information-theoretic security, Proceedings of SPIE-The International Society for Optical Engineering, p. 8440. IEEE, New York (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Liaoning Provincial Natural Science Foundation of China (Grant No. 2019-MS-286), and Shenyang Science & Technology Innovation Talents Program for Young and Middle-aged Scientists (Grant No. LJC202007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Liaoning Provincial Natural Science Foundation of China (Grant No. 2019-MS-286), and Shenyang Science & Technology Innovation Talents Program for Young and Middle-aged Scientists (2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Liu, T. & Wang, C. A One-Round Quantum Mutual Authenticated Key Agreement Protocol with Semi-Honest Server Using Three-Particle Entangled States. Int J Theor Phys 60, 929–943 (2021). https://doi.org/10.1007/s10773-021-04716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04716-0

Keywords

Navigation