Skip to main content
Log in

Some Measurement-Based Characterizations of Separability of Bipartite States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Importance of quantum entanglement has been demonstrated in various applications. Usually, separability of a bipartite state is defined by its algebraic structure, i.e. a convex combination of product states. But it seems to be hard to check separability (equivalently, entanglement) of a state from its algebraic structure. In this note, we give some characterizations of separability of bipartite states based on POVM measurements. For bipartite pure states, we prove the separability, Bell locality, unsteerability and classical correlation are the same. As a consequence, every entangled pure bipartite state is always Bell nonlocal, steerable and quantum correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrodinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc. 31, 555–563 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  4. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  5. Clauser, J.F., Shimony, A.: Experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978)

    Article  ADS  Google Scholar 

  6. Home, D., Selleri, F.: Bell’s theorem and the EPR paradox. Rivista Del Nuovo Cimento. 14, 1–96 (1991)

    Article  MathSciNet  Google Scholar 

  7. Khalfin, L., Tsirelson, B.: Quantum/classical correspondence in the light of Bell’s inequalities. Found. Phys. 22, 879–948 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 8, 329–345 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Zeilinger, A.: Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288–S297 (1999)

    Article  Google Scholar 

  10. Werner, R.F., Wolf, M.M.: All-multipartite Bell-correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)

    Article  ADS  Google Scholar 

  11. Genovese, M.: Research on hidden variable theories: A review of recent progresses. Phys. Rep. 413, 319–396 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010)

    Article  ADS  Google Scholar 

  13. Zhao, L.J., Guo, Y.M., Li-Jost, X., Fei, S.M.: Quantum nonlocality can be distributed via separable states. Sci. China-Phys. Mech. Astron. 61, 070321 (2018)

    Article  ADS  Google Scholar 

  14. Long, G.L., Qin, W., Yang, Z., Li, J.L.: Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment. Sci. China-Phys. Mech. Astron. 61, 030311 (2018)

    Article  ADS  Google Scholar 

  15. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Reid, M.D., He, Q.Y.: Quantifying the mesoscopic nature of the Einstein-Podolsky-Rosen nonlocality. Phys. Rev. Lett. 123, 120402 (2019)

    Article  ADS  Google Scholar 

  17. Cao, H.X., Guo, Z.H.: Characterizing Bell nonlocality and EPR steering. Sci. China-Phys. Mech. Astron. 62, 030311 (2019)

    Article  Google Scholar 

  18. Yang, Y., Cao, H.X., Chen, L., Huang, Y.F.: Λk-Nonlocality of multipartite states and the related nonlocality inequalities. Int. J. Theor. Phys. 57, 1498–1515 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, Z.Z., Yang, Y., Cao, H.X.: Detecting Bell nonlocality based on the Hardy paradox. Int. J. Theor. Phys. 59, 1644–1656 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reid, M.D.: Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989)

    Article  ADS  Google Scholar 

  21. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  MATH  Google Scholar 

  22. Qu, Z.Y., Pereira, S.F., Kimble, H.J., Peng, K.C.: Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663 (1992)

    Article  ADS  Google Scholar 

  23. Huang, X.Y., Zeuthen, E., Gong, Q.H., He, Q.Y.: Engineering asymmetric steady-state Einstein-Podolsky-Rosen steering in macroscopic hybrid systems. Phys. Rev. A 100, 012318 (2019)

    Article  ADS  Google Scholar 

  24. Zheng, S.S., Sun, F.X., Lai, Y.J., Gong, Q.H., He, Q.Y.: Manipulation and enhancement of asymmetric steering via interference effects induced by closed-loop coupling. Phys. Rev. A 99, 022335 (2019)

    Article  ADS  Google Scholar 

  25. Xiang, Y., Su, X., Mista, L. Jr, Adesso, G., He, Q.Y.: Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. Phys. Rev. A 99, 010104 (2019)

    Article  ADS  Google Scholar 

  26. Zheng, C.M., Guo, Z.H., Cao, H.X.: Generalized steering robustness of quantum states. Int. J. Theor. Phys. 57, 1787–1801 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Z.W., Guo, Z.H., Cao, H.X.: Some characterizations of EPR steering. Inter. J. Theor. Phys. 57, 3285–3295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Y., Cao, H.X.: Einstein-Podolsky-Rosen steering inequalities and applications. Entropy 20, 683 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Liu, J., Yang, Y., Xiao, S., Cao, H.X.: Detecting \({{AB}}\rightarrow {C}\) steering in tripartite quantum systems (in Chinese). Sci. Sin-Phys. Mech. Astron. 49, 120301 (2019)

    Google Scholar 

  30. Xiao, S., Guo, Z.H., Cao, H.X.: Quantum steering in tripartite quantum systems (in Chinese). Sci. Sin-Phys. Mech. Astron. 49, 010301 (2019)

    Article  Google Scholar 

  31. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  32. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  33. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  34. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  35. Jing, Y.M., He, Q.Y., Byrnes, T.: Correlation-based entanglement criteria for bipartite systems. Phys. Rev. A 95, 052305 (2017)

    Article  ADS  Google Scholar 

  36. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  37. Guo, Z.H., Cao, H.X., Chen, Z.L.: Distinguishing classical correlations from quantum correlations. J. Phys. A: Math. Theor. 45, 145301 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  39. Wu, Y.C., Guo, G.C.: Norm-based measurement of quantum correlation. Phys. Rev. A 83, 062301 (2011)

    Article  ADS  Google Scholar 

  40. Yu, X.Y., Li, J.H., Li, X.B.: Non-zero quantum discord at finite temperature. Sci. China-Phys. Mech. Astron. 55, 815–821 (2012)

    Article  ADS  Google Scholar 

  41. Yue, H.D., Zhang, Y., Gong, J.: Quantum discord in three-spin XXZ chain with three-spin interaction. Sci. China-Phys. Mech. Astron. 55, 1641–1645 (2012)

    Article  ADS  Google Scholar 

  42. Zhou, T., Cui, J.X., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  43. Xu, J.S.: Analytical expressions of global quantum discord for two classes of multi-qubit states. Phys. Lett. A 377, 238–242 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Yang, Y.G., Jia, X., Sun, S.J., Pan, Q.X.: Quantum cryptographic algorithm for color images sing quantum Fourier transform and double random-phase encoding. Inform. Sci. 277, 445–457 (2014)

    Article  Google Scholar 

  45. Su, X.L.: Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59, 1083–1090 (2014)

    Article  Google Scholar 

  46. Guo, Z.H., Cao, H.X., Qu, S.X.: Partial correlations in multipartite quantum systems. Inform. Sciences 289, 262–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, C.K., Tam, B.S., Tsing, N.K.: Linear maps preserving permutation and stochastic matrices. Linear Alg. Appl. 341, 5–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  49. Gisin, N., Peres, A.: Maximal violation of Bell’s inequality for arbitrarily large spin. Phys. Lett. A 162, 15 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  50. Chen, J.L., Wu, C.F., Kwek, C., Oh, C.H.: Gisin’s theorem for three qubits. Phys. Rev. Lett. 93, 140407 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  51. Chen, J.L., Deng, D.L., Hu, M.G.: Gisin’s theorem for two d-dimensional systems based on the Collins-Gisin-Linden-Masser-Popescu inequality. Phys. Rev. A. 77, 060306 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  52. Li, M., Fei, S.M.: Gisin’s theorem for arbitrary dimensional multipartite states. Phys. Rev. Lett. 104, 240502 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  53. Choudhary, S.K., Ghosh, S., Kar, G., Rahaman, R.: Complete proof of Gisin’s theorem for three qubits. Phys. Rev. A 81, 042107 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  54. Yu, S.X., Chen, Q., Zhang, C.J., Lai, C.H., Oh, C.H.: All entangled pure states violate a single Bell’s inequality. Phys. Rev. Lett. 109, 120402 (2012)

    Article  ADS  Google Scholar 

  55. Gisin, N., Mei, Q.X., Tavakoli, A.M., Renou, O., Brunner, N.: All entangled pure quantum states violate the bilocality inequality. Phys. Rev. A 96, 020304(R) (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11871318, 11771009,12001480), the Fundamental Research Funds for the Central Universities (GK202007002, GK201903001) and the Special Plan for Young Top-notch Talent of Shaanxi Province (1503070117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Zhang, C. & Guo, Z. Some Measurement-Based Characterizations of Separability of Bipartite States. Int J Theor Phys 60, 2558–2572 (2021). https://doi.org/10.1007/s10773-020-04678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04678-9

Keywords

Navigation