Skip to main content
Log in

Quantum/classical correspondence in the light of Bell's inequalities

  • Part III. Invited Papers Dedicated To Henry Margenau
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Instead of the usual asymptotic passage from quantum mechanics to classical mechanics when a parameter tended to infinity, a sharp boundary is obtained for the domain of existence of classical reality. The last is treated as separable empirical reality following d'Espagnat, described by a mathematical superstructure over quantum dynamics for the universal wave function. Being empirical, this reality is constructed in terms of both fundamental notions and characteristics of observers. It is presupposed that considered observers perceive the world as a system of collective degrees of freedom that are inherently dissipative because of interaction with thermal degrees of freedom. Relevant problems of foundation of statistical physics are considered. A feasible example is given of a macroscopic system not admitting such classical reality.

The article contains a concise survey of some relevant domains: quantum and classical Bell-type inequalities; universal wave function; approaches to quantum description of macroscopic world, with emphasis on dissipation; spontaneous reduction models; experimental tests of the universal validity of the quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Invited papers dedicated to John Stewart Bell,”Found. Phys. 20, No. 10 (1990) to21, No. 3 (1991).

  2. “Josephson junction, macroscopic quantum tunneling, network,”Jpn. J. Appl. Phys. 26, Suppl. 3, 1378–1429 (1987).

  3. G. S. Agarval, “Brownian motion of a quantum oscillator,”Phys. Rev. A 4, 739–747 (1971).

    Google Scholar 

  4. David Albert, “On quantum-mechanical automata,”Phys. Lett. A 98, 249–252 (1983).

    Google Scholar 

  5. Vinay Ambegaokar, Ulrich Eckern, and Gerd Schon, “Quantum dynamics of tunneling between superconductors,”Phys. Rev. Lett. 48, 1745–1748 (1982).

    Google Scholar 

  6. Huzihiro Araki, “A remark on Machida-Namiki theory of measurement,”Prog. Theor. Phys. 64, 719–730 (1980).

    Google Scholar 

  7. Alain Aspect, “Experimental tests of Bell's inequalities in atomic physics,”Atomic Physics, Vol. 8, I. Lindgrenet al., ed. (Plenum Press, New York), pp. 103–128.

  8. Alain Aspect, Phillipe Grangier, and Gerard Roger, “Experimental tests of realistic local theories via Bell's theorem,”Phys. Rev. Lett. 47, 460–463 (1981); “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell's inequalities,”Phys. Rev. Lett. 49, 91–94 (1982).

    Google Scholar 

  9. Alain Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell's inequalities using time-varying analysers,”Phys. Rev. Lett. 49, 1804–1807 (1982).

    Google Scholar 

  10. Alain Aspect and P. Grangier, “About resonant scattering and the other hypothetical effects in the Orsay atomic-cascade experiment tests of Bell inequalities: a discussion and some new experimental data,”Lett. Nuovo Cimento 43, 345–348 (1985).

    Google Scholar 

  11. John Baez, “Bell's inequality forC*-algebras,”Lett. Math. Phys. 13, 135–136 (1987).

    Google Scholar 

  12. L. Ballentine, “Limitations of the projection postulate,”Found. Phys. 20, 1329–1343 (1990).

    Google Scholar 

  13. L. Ballentine, “The statistical interpretation of quantum mechanics,”Rev. Mod. Phys. 42, 358–381 (1970).

    Google Scholar 

  14. Thomas Banks, Leonard Susskind, and Michael Peskin, “Difficulties for the evolution of pure states into mixed states,”Nucl. Phys. B 244, 125–134 (1984).

    Google Scholar 

  15. K. Baumann, “Quantenmechanik und Objektivierbarkeit,”Z. Naturforsch. A 25, 1954–1956 (1970).

    Google Scholar 

  16. John Bell, “Are there quantum jumps?” inSpeakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, New York, 1987), pp. 201–212.

    Google Scholar 

  17. John Bell, “Introductory Remarks,”Phys. Rep. 137, 7–9 (1986); “Quantum field theory without observers,”Phys. Rep. 137, 49–54 (1986).

    Google Scholar 

  18. John Bell, “EPR correlations and EPW distributions,” Ref. 92, pp. 263–266.

    Google Scholar 

  19. John Bell, “On wave packet reduction in the Coleman-Hepp model,”Helv. Phys. Acta 48, 93–98 (1975).

    Google Scholar 

  20. John Bell, “Introduction to the hidden-variable question,” Ref. 59, pp. 171–181.

    Google Scholar 

  21. John Bell, “On the problem of hidden variables in quantum mechanics,”Rev. Mod. Phys. 38, 447–452 (1966).

    Google Scholar 

  22. John Bell, “On the Einstein-Podolsky-Rosen paradox,”Physics 1, 195–200 (1964).

    Google Scholar 

  23. John Bell, A. Shimony, M. Horne, and J. Clauser, “An exchange on local beables,”Dialectica 39, 85–110 (1985).

    Google Scholar 

  24. F. Berezin and M. Shubin,The Schrödinger Equation (Moscow University Press, Moscow, 1983) (in Russian).

    Google Scholar 

  25. David Bohm,Quantum theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1952).

    Google Scholar 

  26. David Bohm, “A suggested interpretation of the quantum theory in terms of “hidden” variables. I,”Phys. Rev. 85, 166–179 (1952); “A suggested interpretation of the quantum theory in terms of “hidden” variables. II,”Phys. Rev. 85, 180–193 (1952).

    Google Scholar 

  27. David Bohm, B. Hiley, and P. Kaloyerou, “An ontological basis for the quantum theory,”Phys. Rep. 144, 321–375 (1987).

    Google Scholar 

  28. David Bohm and J. Bub, “A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory,”Rev. Mod. Phys. 38, 453–469 (1966).

    Google Scholar 

  29. Niels Bohr, “The quantum postulate and the recent development of atomic theory,”Nature (London) 121, 580–590 (1928).

    Google Scholar 

  30. V. Braginsky, V. Mitrofanov, and V. Panov,Systems with small dissipation (Nauka, Moscow, 1981) (in Russian).

    Google Scholar 

  31. C. Brans, “Bell's theorem does not eliminate fully causal hidden variables,”Int. J. Theor. Phys. 27, 219–226 (1988).

    Google Scholar 

  32. M. Bronstein, “Quantization of gravitational waves,”Zh. Eksp. Teor. Fiz. 6, 195–236 (1936) (in Russian).

    Google Scholar 

  33. R. Brout, G. Horwitz, and D. Weil, “On the onset of time and temperature in cosmology,”Phys. Lett. B 192, 318–322 (1987).

    Google Scholar 

  34. J. Bub, “The Daneri-Loinger-Prosperi quantum theory of measurement,”Nuovo Cimento B 57, 503–520 (1968).

    Google Scholar 

  35. Paul Busch, Marian Grabowski, and Pekka Lahti, “Some remarks on effects, operations, and unsharp measurements,”Found. Phys. 2, 331–345 (1989).

    Google Scholar 

  36. A. Caldeira and A. Leggett, “Quantum tunneling in a dissipative system,”Ann. Phys. (N.Y.) 149, 374–456 (1983).

    Google Scholar 

  37. A. Caldeira and A. Leggett, “Influence of dissipation on quantum tunneling in macroscopic systems,”Phys. Rev. Lett. 46, 211–214 (1981).

    Google Scholar 

  38. A. Caldeira and A. Leggett, “Influence of damping on quantum interference: An exactly soluble model,”Phys. Rev. A 31, 1059–1066 (1985).

    Google Scholar 

  39. Curtis Callan and Sidney Coleman, “Fate of the false vacuum. II. First quantum corrections,”Phys. Rev. D 16, 1762–1768 (1977).

    Google Scholar 

  40. Herbert Callen and Theodore Welton, “Irreversibility and generalized noise,”Phys. Rev. 83, 34–40 (1951).

    Google Scholar 

  41. Carlton Caves and G. J. Milburn, “Quantum mechanical model for continuous position measurements,”Phys. Rev. A 36, 5543–5555 (1987).

    Google Scholar 

  42. Carlton Caves, “Quantum mechanics of measurements distributed in time. II. Connections among formulations,”Phys. Rev. D 35, 1815–1830 (1987).

    Google Scholar 

  43. A. Cetto, L. de la Pena, and E. Santos, “A Bell inequality involving position, momentum, and energy,”Phys. Lett. A 113, 304–306 (1985).

    Google Scholar 

  44. Sudip Chakravarty and Anthony Leggett, “Dynamics of the two-state system with Ohmic dissipation,”Phys. Rev. Lett. 52, 5–8 (1984).

    Google Scholar 

  45. Kai Lai Chung,Markov Chains with Stationary Transition Probabilities (Springer-Verlag, New York, 1967).

    Google Scholar 

  46. Christopher Clarke, “Uncertain cosmology,” Ref. 200, pp. 51–60.

    Google Scholar 

  47. John F. Clauser and Abner Shimony, “Bell's theorem: experimental tests and implications,”Rep. Prog. Phys. 41, 1881–1927 (1978).

    Google Scholar 

  48. J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to test local hidden-variable theories,”Phys. Rev. Lett. 23, 880–884 (1969).

    Google Scholar 

  49. Sidney Coleman, “Black holes as red herrings: topological fluctuations and the loss of quantum coherence,”Nucl. Phys. B 307, 867–882 (1988).

    Google Scholar 

  50. Sidney Coleman, “The use of instantons question,”The Whys of Subnuclear Physics, A. Zichichi, ed. (Plenum Press, New York, 1979), pp. 805–916.

    Google Scholar 

  51. B. S. Cirel'son, “Quantum generalizations of Bell's inequality,”Lett. Math. Phys. 4, 93–100 (1980).

    Google Scholar 

  52. A. Daneri, A. Loinger, and G. Prosperi, “Quantum theory of measurement and ergodicity conditions,”Nucl. Phys. 33, 297–319 (1962).

    Google Scholar 

  53. A. Daneri, A. Loinger, and G. Prosperi, “Further remarks on the relations between statistical mechanics and quantum theory of measurement,”Nuovo Cimento B 44, 119–128 (1966).

    Google Scholar 

  54. D. Danin,Probabilistic world (Znanie, Moscow, 1981) (in Russian).

    Google Scholar 

  55. Amitava Datta and Dipankar Home, “Quantum nonseparability versus local realism: a new test usingB 0939-10 system,”Phys. Lett. A 119, 3–6 (1986).

    Google Scholar 

  56. E. Davies, “Quantum stochastic processes,”Commun. Math. Phys. 15, 277–304 (1969); “Quantum stochastic processes. II,”19, 83–105 (1970); and “Quantum stochastic processes. III,”22, 51–70 (1971).

    Google Scholar 

  57. E. Davies and J. Lewis, “An operational approach to quantum probability,”Commun. Math. Phys. 17, 239–260 (1970).

    Google Scholar 

  58. Bernard D'Espagnat, “Towards a separable ‘empirical reality’?”Found. Phys. 20, 1147–1172 (1990).

    Google Scholar 

  59. Bernard D'Espagnat, (ed.), “Foundations of quantum mechanics,”Proc. Int. School of Phys. Enrico Fermi (Academic Press, New York, 1971).

    Google Scholar 

  60. W. De Baere, “Einstein-Podolsky-Rosen paradox and Bell's inequalities,”Adv. Electronics Electron Phys. 68, 245–336 (1986).

    Google Scholar 

  61. David Deutsch, “Quantum theory as a universal physical theory,”Int. J. Theor. Phys. 24, 1–41 (1985).

    Google Scholar 

  62. D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,”Proc. R. Soc. London A 400, 97–117 (1985).

    Google Scholar 

  63. Bryce DeWittet al. (ed.),The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1973).

    Google Scholar 

  64. Lajos Diosi, “Relativistic theory for continuous measurement of quantum field,”Phys. Rev. A 42, 5086–5092 (1990).

    Google Scholar 

  65. Lajos Diosi, “Continuous quantum measurement and Ito formalism,”Phys. Lett. A 129, 419–423 (1988).

    Google Scholar 

  66. Lajos Diosi, “Quantum stochastic processes as models for the state vector reduction,”J. Phys. A 21, 2885–2898 (1988).

    Google Scholar 

  67. Lajos Diosi, “On the motion of solids in modified quantum mechanics,”Europhys. Lett. 6, 285–290 (1988).

    Google Scholar 

  68. Lajos Diosi, “Exact solution for particle trajectories in modified quantum mechanics,”Phys. Lett. A 122, 221–225 (1987).

    Google Scholar 

  69. Lajos Diosi, “A universal master equation for the gravitational violation of quantum mechanics,”Phys. Lett. A 120, 377–381 (1987).

    Google Scholar 

  70. Albert Einstein, Boris Podolsky, and Nathan Rosen, “Can quantum-mechanical description of physical reality be considered complete?”Phys. Rev. 47, 777–780 (1935).

    Google Scholar 

  71. Albert Einstein, “Quanten-Mechanik und Wirklichkeit,”Dialectica 2, 320–323 (1948).

    Google Scholar 

  72. Albert Einstein, “Remarks concerning the essays brought together in this cooperative volume,”Albert Einstein, Philosopher-Scientist, P. A. Schillp, ed. (Harper and Row, New York, 1949), pp. 665–688.

    Google Scholar 

  73. J. Ellis, J. Hagelin, D. Nanopoulos, and M. Srednicki, “Search for violations of quantum mechanics,”Nucl. Phys. B 241, 381–405 (1984).

    Google Scholar 

  74. Hugh Everett, “‘Relative state’ formulation of quantum mechanics,”Rev. Mod. Phys. 29, 454–462 (1957).

    Google Scholar 

  75. Paul Fedele and Yong Kim, “Direct measurement of the velocity autocorrelation function for a Brownian test particle,”Phys. Rev. Lett. 44, 691–694 (1980).

    Google Scholar 

  76. Richard Feynman, “Quantum mechanical computers,”Found. Phys. 16, 507–531 (1986).

    Google Scholar 

  77. P. C. Fishburn and J. A. Reeds, “Bell inequalities, Grothendieck's constant and root two,” to appear (1991).

  78. M. Froissart, “Constructive generalization of Bell's inequalities,”Nuovo Cimento B 64, 241–251 (1981).

    Google Scholar 

  79. W. Furry, “Note on the quantum-mechanical theory of measurement,”Phys. Rev. 49, 393–399 (1936).

    Google Scholar 

  80. C. Gardiner and M. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,”Phys. Rev. A 31, 3761–3774 (1985).

    Google Scholar 

  81. C. Gardiner, A. Parkins, and M. Collett, “Input and output in damped quantum systems. II. Methods in non-white-noise situations and application to inhibition of atomic phase decays,” Ref. 246, pp. 1683–1699.

    Google Scholar 

  82. Anupam Garg and N. David Mermin, “Farkas's lemma and the nature of reality: statistical implications of quantum correlations,”Found. Phys. 14, 1–39 (1984).

    Google Scholar 

  83. A. Garuccio and F. Selleri, “Enhanced photon detection in EPR type experiments,”Phys. Lett. A 103, 99–103 (1984).

    Google Scholar 

  84. A. Garuccio and F. Selleri, “Systematic derivation of all the inequalities of Einstein locality,”Found. Phys. 10, 209–216 (1980).

    Google Scholar 

  85. Yuval Gefen and Ora Entin-Wohlman, “Noise spectrum and the fluctuation-dissipation theorem in mesoscopic rings,”Ann. Phys. (N.Y.) 206, 68–89 (1991).

    Google Scholar 

  86. G. C. Ghirardi, R. Grossi, and P. Pearle, “Relativistic dynamical reduction models: general framework and examples,”Found. Phys. 20, 1271–1316 (1990).

    Google Scholar 

  87. G. Ghirardi, A. Rimini, and T. Weber, “The puzzling entanglement of Schrödinger's wave function,”Found. Phys. 18, 1–27 (1988).

    Google Scholar 

  88. G. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,”Phys. Rev. D 34, 470–491 (1986).

    Google Scholar 

  89. S. Giddings and A. Strominger, “Loss of incoherence and determination of coupling constants in quantum gravity,”Nucl. Phys. B 307, 854–866 (1988).

    Google Scholar 

  90. N. Giordano, “Evidence for macroscopic quantum tunneling in one-dimensional superconductors,”Phys. Rev. Lett. 61, 2137–2140 (1988).

    Google Scholar 

  91. R. Glauber, “Amplifiers, attenuators, and Schrödinger's cat,” Ref. 92, pp. 336–372.

    Google Scholar 

  92. Daniel Greenberger (ed.), Proc. of a conference on “New Techniques and Ideas in Quantum Measurement Theory,”Ann. N.Y. Acad. Sci. 480, (1986).

  93. Daniel M. Greenberger, Michael A. Horne, Abner Shimony, and Anton Zeilinger, “Bell's theorem without inequalities,”Am. J. Phys. 58, 1131–1143 (1990).

    Google Scholar 

  94. Daniel M. Greenberger and Alaine YaSin, “‘Haunted’ measurements in quantum theory,”Found. Phys. 19, 679–704 (1989).

    Google Scholar 

  95. A. Grib, “Bell's inequalities and experimental testing of quantum correlations on macroscopic distance,”Usp. Fiz. Nauk 142, 619–634 (1984) (in Russian).

    Google Scholar 

  96. F. Guinea, V. Hakim, and A. Muramatsu, “Diffusion and localization of a particle in a periodic potential coupled to a dissipative environment,”Phys. Rev. Lett. 54, 263–266 (1985).

    Google Scholar 

  97. F. Guinea, “Friction and particle-hole pairs,”Phys. Rev. Lett. 53, 1268–1271 (1984).

    Google Scholar 

  98. Alan Guth and So-Young Pi, “Quantum mechanics of the scalar field in the new inflationary Universe,”Phys. Rev. D 32, 1899–1920 (1985).

    Google Scholar 

  99. Rudolf Haag and Daniel Kastler, “An algebraic approach to quantum field theory,”J. Math. Phys. 5, 848–861 (1964).

    Google Scholar 

  100. Fritz Haake and Daniel Walls, “Overdamped and amplifying meters in the quantum theory of measurement,”Phys. Rev. A 36, 730–739 (1987).

    Google Scholar 

  101. V. Hakim and V. Ambegaokar, “Quantum theory of a free particle interacting with a linearly dissipative environment,”Phys. Rev. A 32, 423–434 (1985).

    Google Scholar 

  102. Stephen Hawking, “‘Wormholes in spacetime,”Phys. Rev. D 37, 904–910 (1988).

    Google Scholar 

  103. Stephen Hawking and R. Laflamme, “Baby universes and the nonrenormalizability of gravity,”Phys. Lett. B 209, 39–41 (1988).

    Google Scholar 

  104. Stephen Hawking, “Non-trivial topologies in quantum gravity,”Nucl. Phys. B 244, 135–146 (1984).

    Google Scholar 

  105. K. Hellwig and K. Kraus, “Formal description of measurements in local quantum field theory,”Phys. Rev. D 1, 566–571 (1970).

    Google Scholar 

  106. K. Hellwig and K. Kraus, “Pure operations and measurements,”Commun. Math. Phys. 11, 214–220 (1969); “Operations and measurements. II,”16, 142–147 (1970).

    Google Scholar 

  107. Klaus Hepp, “Quantum theory of measurement and macroscopic observables,”Helv. Phys. Acta 45, 237–248 (1972).

    Google Scholar 

  108. H. Hoffmann and P. Siemens, “Linear response theory for dissipation in heavy-ion collisions,”Nucl. Phys. A 257, 165–188 (1976).

    Google Scholar 

  109. H. Hoffmann and P. Siemens, “On the dynamics of statistical fluctuations in heavy ion collisions,”Nucl. Phys. A 275, 464–486 (1977).

    Google Scholar 

  110. A. Holevo,Probabilistic and Statistical Aspects of Quantum Theory (Nauka, Moscow, 1980) (in Russian); English translation: North-Holland, Amsterdam (1982).

    Google Scholar 

  111. D. Home and T. Marshall, “A stochastic local realist model for experiment which reproduces the quantum mechanical coincidence rates,”Phys. Lett. A 113, 183–186 (1985).

    Google Scholar 

  112. D. Home and F. Selleri, “Bell's theorem and the EPR paradox,”Riv. Nuovo Cimento 14, 1–95 (1991).

    Google Scholar 

  113. Michael Horne and Anton Zeilinger, “A Bell-type EPR experiment using linear momenta,” Ref. 157, pp. 435–439.

    Google Scholar 

  114. J. M. Jauch, “The problem of measurement in quantum mechanics,”Helv. Phys. Acta 37, 293–316 (1964).

    Google Scholar 

  115. J. M. Jauch, Eugene Wigner, and M. Yanase, “Some comments concerning measurements in quantum mechanics,”Nuovo Cimento B 48, 144–151 (1967).

    Google Scholar 

  116. E. Joos, “Why do we observe a classical spacetime?”Phys. Lett. A 116, 6–8 (1986)

    Google Scholar 

  117. E. Joos, “Quantum theory and the appearance of a classical world,” Ref. 92, pp. 6–13.

    Google Scholar 

  118. E. Joos, “Continuous measurement: Watchdog effect versus golden rule,”Phys. Rev. D 29, 1626–1633 (1984).

    Google Scholar 

  119. E. Joos and H. Zeh, “The emergence of classical properties through interaction with the environment,”Z. Phys. B 59, 223–243 (1985).

    Google Scholar 

  120. S. Kamefuchi (ed.),Proc. Int. Symp. on the Foundations of Quantum Mechanics in the light of New Technology (Phys. Soc. Japan, 1984).

  121. T. Kennedy and D. Walls, “Squeezed quantum fluctuations and macroscopic quantum coherence,”Phys. Rev. A 37, 152–157 (1988).

    Google Scholar 

  122. Leonid Khalfin, “Quantum-classical correspondence in the light of classical Bell's and quantum Tsirelson's inequalities,” inComplexity, Entropy and the Physics of Information, SFI studies in the Sciences of Complexity, Vol. 9, W. Zurek, ed., (Addison-Wesley, New York, 1990).

    Google Scholar 

  123. Leonid Khalfin, “New results on the CP-violation problem,” Tech. Rep. DOE-ER40200-211, Center for Particle Theory, The University of Texas at Austin (February 1990).

  124. Leonid Khalfin, “Euclidean approach, Langer-Polyakov-Coleman instanton method and the quantum decay theory,” Invited lecture to the seminar “Gauge Theories of Fundamental Interactions” at the Stefan Banach Int. Math. Centre, Warsaw (september 1988), inProc. of the XXXII Semester in the Stefan Banach Int. Math. Centre (World Scientific, Singapore, 1990), pp. 469–484.

    Google Scholar 

  125. Leonid Khalfin, “The problem of foundation of the satistical physics and the quantum decay theory,” Invited lectures at the Stefan Banach Int. Math. Center, Warsaw (September 1988).

  126. Leonid Khalfin, “A new effect of the CP-violation for heavy mesons,” Preprint LOMI E-6-87, Leningrad (1987).

  127. Leonid Khalfin, “A new effect of the CP-violation for neutral kaons,” Preprint LOMI E-7-87, Leningrad (1987).

  128. Leonid Khalfin, “Euclidean approach, Langer-Polyakov-Coleman method and the quantum decay theory,” Report to the Scientific Conference, Nuclear Physics Department USSR Academy of Sciences (April 1987) (unpublished).

  129. Leonid Khalfin, “The problem of the foundation of statistical physics, the non-exponentiality of the asymptotic of the correlation functions and the quantum decay theory,”First World Congress Bernoulli Society, Vol. 2 (1986), p. 692.

    Google Scholar 

  130. Leonid Khalfin, “Unconditional test of the CPT-invariance and a new effect of the CP-violation forK 0 − K0 mesons,”Proceedings of the III Seminar, Group Theoretical Methods in Physics, Vol. 2, M. Markov, ed. (1986), p. 608 (in Russian).

  131. Leonid Khalfin, “The decay of false vacuum, macroscopic tunneling and the quantum decay theory,” Report to the Scientific Conference, Nuclear Physics Department, USSR Academy of Sciences (November 1986) (unpublished).

  132. Leonid Khalfin, “A new effect of CP-violation forD 0 − D0,B 0 − B0, (T 0 − T0),” report to the Council of the Nuclear Physics Department, USSR Academy of Sciences (October 1985) (unpublished).

  133. Leonid Khalfin, “Non-exponential decreasing of the correlation functions, the divergence of the kinetic coefficients and the quantum decay theory,”IV Int. Symp. on Inform. Theory (Tashkent), Vol. 3 (1984), p. 213.

  134. Leonid Khalfin, “Bell's inequalities, Tsirelson's inequalities andK 0 − K0 0K 0 mesons,” Report to the session of Nuclear Physics Department, USSR Academy of Sciences (April 1983) (unpublished).

  135. Leonid Khalfin, “The asymptotic dependence of the correlation functions and the divergence of the kinetic coefficients,”III Int. Vilnius Conf. on Prob. Theory and Math. Stat., Vol. 2 (1981), p. 215.

  136. Leonid Khalfin, “Theory ofK 0 − K0,D 0 − d0,B 0 − b0, (T 0 − t0) mesons outside the Wigner-Weisskopf approximation and the CP-invariance problem,” Preprint LOMI P-4-80, Leingrad (1980).

  137. Leonid Khalfin, “On Boltzman's H theorem,”Theor. Math. Phys. 35, 555–558 (1978).

    Google Scholar 

  138. Leonid Khalfin, “Modern situation with the mathematical foundation of statistical physics,”Usp. Mat. Nauk 33, 243 (1978) (in Russian).

    Google Scholar 

  139. Leonid Khalfin, “Investigations on the quantum theory of the unstable particles,” dissertation, Lab. Theor. Phys. JINR (1973) (unpublished).

  140. Leonid Khalfin, “The CPT-invariance of the CP-noninvariant theory ofK 0 − 943-100 mesons and admissible mass distributions ofK S andK L mesons,”Pis'ma Zh. Eksp. Teor. Fiz. 15, 348 (1972) (in Russian).

    Google Scholar 

  141. Leonid Khalfin, “The problem of the foundations of statistical physics and the quantum decay theory,”Dokl. Akad. Nauk 162, 1273–1276 (1965) (in Russian).

    Google Scholar 

  142. Leonid Khalfin, “Quantum theory of the decay of the physical systems,” dissertation, Lebedev Phys. Inst., USSR Academy of Sciences (1960) (unpublished).

  143. Leonid Khalfin, “On the decay theory of a quasi-stationary state,”Zh. Eksp. Teor. Fiz. 33, 1371 (1958) (in Russian).

    Google Scholar 

  144. Leonid Khalfin, “On the decay theory of a quasi-stationary state,”Dokl. Akad. Nauk SSSR 115, 277–280 (1957) (in Russian).

    Google Scholar 

  145. Leonid Khalfin and Boris Tsirelson, “Quantum/classical correspondence in the light of Bell's inequalities,” technical report MIT/LCS/TM/420, Massachusetts Institute of Technology (November 1990).

  146. Leonid Khalfin and Boris Tsirelson, “A quantitative criterion of the applicability of the classical description within the quantum theory,” Ref. 156, pp. 369–401.

    Google Scholar 

  147. Leonid Khalfin and Boris Tsirelson, “Quantum and quasi-classical analogs of Bell inequalities,” Ref. 157, pp. 441–460.

    Google Scholar 

  148. S. Khoruzhy,Introduction to Algebraic Quantum Field Theory (Nauka, Moscow, 1986) (in Russian).

    Google Scholar 

  149. R. Koch, D. Van Harlingen, and J. Clarke, “Quantum-noise theory for the resistively shunted Josephson junction,”Phys. Rev. Lett. 45, 2132–2135 (1980); “Observation of zero-point fluctuations in a resistively shunted Josephson tunnel junction,”47, 1216–1219 (1981).

    Google Scholar 

  150. S. Kochen, “A new interpretation of quantum mechanics,” Ref. 157, pp 151–169.

    Google Scholar 

  151. Karl Kraus, “General state changes in quantum theory,”Ann. Phys. (N.Y.) 64, 311–335 (1971).

    Google Scholar 

  152. N. Krylov, “Works on foundations of statistical physics,” USSR Academy of Sciences Moscow and Leningrad (1950) (in Russian).

  153. N. Krylov and V. Fock, “On the two main interpretations of the energy-time uncertainty relation,”Zh. Eksp. Teor. Fiz. 17, 93–107 (1947) (in Russian).

    Google Scholar 

  154. O. Kübler and H. Zeh, “Dynamics of quantum correlations,”Ann. Phys. (N.Y.) 76, 405–418 (1973).

    Google Scholar 

  155. R. Kubo, “The fluctuation-dissipation theorem,”Rep. Prog. Phys. 29, 255–284 (1966).

    Google Scholar 

  156. P. Lahtiet al. (ed.),Symposium on the Foundations of Modern Physics 1987 (World Scientific, Singapore, 1987).

    Google Scholar 

  157. P. Lahtiet al. (ed.),Symposium on the Foundations of Modern Physics 1985 (World Scientific, Singapore, 1985).

    Google Scholar 

  158. Lawrence Landau, “Empirical two-point correlation functions,”Found. Phys. 18, 449–460 (1988).

    Google Scholar 

  159. Lawrence Landau, “Gaussian quantum fields and stochastic electrodynamics,”Phys. Rev. A 37, 4449–4460 (1988).

    Google Scholar 

  160. Lawrence Landau, “On the violation of Bell's inequality in quantum theory,”Phys. Lett. A 120, 54–56 (1987).

    Google Scholar 

  161. Lawrence Landau, “Experimental tests of general quantum theories,”Lett. Math. Phys. 14, 33–40 (1987).

    Google Scholar 

  162. Lawrence Landau, “On the non-classical structure of the vacuum,”Phys. Lett. A 123, 115–118 (1987).

    Google Scholar 

  163. J. Langer, “Theory of the condensation point,”Ann. Phys. 41, 108–157 (1967); “Statistical theory of the decay of metastable states,”54, 258–275 (1969).

    Google Scholar 

  164. G. Lavrelashvili, V. Rubakov, and P. Tinyakov, “On the loss of quantum coherence via changing of space topology in quantum gravity,Pis'ma Zh. Eksp. Teor. Fiz. 46, 134–136 (1987) (in Russian).

    Google Scholar 

  165. T. D. Lee and C. N. Yang, unpublished; D. Inglis, “Completeness of quantum mechanics and charge-conjugation correlations of theta particles,”Rev. Mod. Phys. 33, 1–7 (1961).

    Google Scholar 

  166. T. D. Lee and C. S. Wu,Annu. Rev. Nucl. Sci. 15, 381–476 (1965);16, 471–599 (1966).

    Google Scholar 

  167. A. J. Leggett, “Schrödinger's cat and her laboratory cousins,”Contemp. Phys. 25, 583–598 (1984).

    Google Scholar 

  168. A. Leggett, “Macroscopic quantum systems and the quantum theory of measurement,”Prog. Theor. Phys. Suppl., No. 69, 80–100 (1980).

    Google Scholar 

  169. A. Leggett, “Quantum mechanics and realism at the macroscopic level. Is an experimental discrimination feasible?” Ref. 92, pp. 21–24.

    Google Scholar 

  170. A. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,”Rev. Mod. Phys. 59, 1–85 (1987).

    Google Scholar 

  171. A. J. Leggett and A. Garg, “Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?,”Phys. Rev. Lett. 54, 857–860 (1985).

    Google Scholar 

  172. A. J. Leggett and F. Sols, “On the concept of spontaneously broken gauge symmetry in condensed matter physics,”Found. Phys. 21, 353–364 (1991).

    Google Scholar 

  173. V. L. Lepore, “New inequalities from local realism,”Found Phys. Lett. 2, 15–26 (1989).

    Google Scholar 

  174. K. K. Likharev, “Really-quantum macroscopic effects in weak superconductivity,”Usp. Fiz. Nauk 139, 169–184 (1983) (in Russian).

    Google Scholar 

  175. A. Loinger, “Comments on a recent paper concerning the quantum theory of measurement,”Nucl. Phys. A 108, 245–249 (1968).

    Google Scholar 

  176. H. McKean,Stochastic Integrals (Academic Press, New York, 1969).

    Google Scholar 

  177. S. Machida and M. Namiki, “Theory of measurement in quantum mechanics. Mechanism of reduction of wave packet. I,”Prog. Theor. Phys. 63, 1457–1473 (1980); “Theory of measurement in quantum mechanics. Mechanism of reduction of wave packet. II,”Prog. Theor. Phys. 63, 1833–1847 (1980).

    Google Scholar 

  178. L. Mandelstam, “Lectures on foundations of quantum mechanics (the theory of indirect measurements),”Complete Collected Scientific Works, Vol. 5 (Academy of Sciences USSR, Moscow, 1950), pp. 345–415.

    Google Scholar 

  179. Norman Margolus, “Parallel quantum computation,” manuscript (1989).

  180. T. Marshall, E. Santos, and F. Selleri, “Local realism has not been refuted by atomic cascade experiments,”Phys. Lett. A 98, 5–9 (1983).

    Google Scholar 

  181. T. Marshall, “The distance separating quantum theory from reality,”Phys. Lett. A 99, 163–166 (1983).

    Google Scholar 

  182. T. Marshall and E. Santos,Phys. Lett. A 108, 373–376 (1985).

    Google Scholar 

  183. John Martinis, Michel Devoret, and John Clarke, “Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction,”Phys. Rev. B 35, 4682–4698 (1987).

    Google Scholar 

  184. G. Milburn and D. Walls, “Effect of dissipation on interference in phase space,”Phys. Rev. A 38, 1087–1090 (1988).

    Google Scholar 

  185. N. Mott, “The wave mechanics of α-ray tracks,”Proc. R. Soc. London A 126, 79–84 (1929).

    Google Scholar 

  186. M. Namikiet al. (ed.),Proc. Second Int. Symp. on the Foundation of Quantum Mechanics in the Light of New Technology (Phys. Soc. Japan, 1987).

  187. E. Nelson, “The locality problem in stochastic mechanics,” Ref. 92, pp. 533–538.

    Google Scholar 

  188. Z. Ou and L. Mandel, “Violation of Bell's inequality and classical probability in a two-photon correlation experiment,”Phys. Rev. Lett. 61, 50–53 (1988).

    Google Scholar 

  189. D. Palatnik, private communication.

  190. S. Pascazio and J. Reignier, “On emission lifetimes in atomic cascade tests of the Bell inequality,”Phys. Lett. A 126, 163–167 (1987).

    Google Scholar 

  191. Wolfgang Pauli,Festschrift zum 60. Geburtstage A. Sommerfelds, Leipzig (1928).

  192. Philip Pearle, “Alternative to the orthodox interpretation of quantum theory,”Am. J. Phys. 35, 742–753 (1967).

    Google Scholar 

  193. Asher Peres, “Existence of ‘free will’ as a problem of physics,”Found. Phys. 16, 573–584 (1986).

    Google Scholar 

  194. Asher Peres, “Reversible logic and quantum computers,”Phys. Rev. A 32, 3266–3276 (1985).

    Google Scholar 

  195. Asher Peres, “On quantum-mechanical automata,”Phys. Lett. A 101, 249–250 (1984).

    Google Scholar 

  196. Asher Peres, “When is a quantum measurement?” Ref. 92, pp. 438–448.

    Google Scholar 

  197. Asher Peres and Nathan Rosen, “Quantum limitations on the measurement of gravitational fields,”Phys. Rev. 118, 335–336 (1960).

    Google Scholar 

  198. W. Perrie, A. Duncan, H. Beyer, and H. Kleinpoppen, “Polarization correlation of the two photons emitted by metastable atomic deuterium: a test of Bell's inequality,”Phys. Rev. Lett. 54, 1790–1793 (1985).

    Google Scholar 

  199. A. M. Polyakov, “Hidden symmetry of the two-dimensional chiral fields,”Phys. Lett. B 72, 224–226 (1977).

    Google Scholar 

  200. W. C. Priceet al. (ed.)The Uncertainty Principle and Foundations of Quantum Mechanics: A Fifty Year's Survey (Wiley, New York, 1977).

    Google Scholar 

  201. 201.Ilya Prigogine,From Being to Becoming: Time and Complexity in the Physical Sciences (W. H. Freeman, San Francisco, 1980).

    Google Scholar 

  202. H. Primas, “Contextual quantum objects and their ontic interpretation,” Ref. 156, pp. 251–275.

    Google Scholar 

  203. G. Prosperi, “The quantum measurement process and the observation of continuous trajectories,”Lect. Notes Math. 1055, 301–326 (1984).

    Google Scholar 

  204. Peter Rastall, “Locality, Bell's theorem, and quantum mechanics,”Found. Phys. 15, 963–972 (1985).

    Google Scholar 

  205. Michael Redhead, “Relativity and quantum mechanics—conflict or peaceful coexistence?” Ref. 92, pp. 14–20.

    Google Scholar 

  206. T. Regge, “Gravitational fields and quantum mechanics,”Nuovo Cimento 7, 215–221 (1958).

    Google Scholar 

  207. P. Riseborough, P. Hanggi, and U. Weiss, “Exact results for a damped quantummechanical harmonic oscillator,”Phys. Rev. A 31, 471–478 (1985).

    Google Scholar 

  208. L. Rosenfeld, “The measuring process in quantum mechanics,”Prog. Theor. Phys. Supp., extra number, 222–231 (1965); “Questions of method in the consistency problem of quantum mechanics,”Nucl. Phys. A 108, 241–244 (1968).

    Google Scholar 

  209. S. M. Roy and V. Singh, “Hidden variable theories without non-local signalling and their experimental tests,”Phys. Lett. A 139, 437–441 (1989).

    Google Scholar 

  210. S. M. Roy and V. Singh, “Generalized beable quantum field theory,”Phys. Lett. B 234, 117–120 (1990).

    Google Scholar 

  211. C. Savage and D. Walls, “Damping of quantum conherence: the master-equation approach,”Phys. Rev. A 32, 2316–2323 (1985); “Quantum coherence and interference of damped free particles,”Phys. Rev. A 32, 3487–3492 (1985).

    Google Scholar 

  212. Erwin Schrödinger, “Die gegenwartige Situation in der Quantenmechanik,”Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935).

    Google Scholar 

  213. S. Schlieder, “Einige Bemerkungen zur Zustandsänderung von relativistischen quantenmechanischen Systemen durch Messungen und zur Lokalitätsforderung,”Commun. Math. Phys. 7, 305–331 (1968).

    Google Scholar 

  214. A. Schmid, “Diffusion and localization in a dissipative quantum system,”Phys. Rev. Lett. 51, 1506–1509 (1983).

    Google Scholar 

  215. Albert Schmid, “On a quasiclassical Langevin equation,”J. Low Temp. Phys. 49, 609–626 (1982).

    Google Scholar 

  216. F. Selleri, “Realism and the wave-function of quantum mechanics,” Ref. 59, pp. 398–406.

    Google Scholar 

  217. F. Selleri, “Einstein locality and theK 0946-10 system,”Lett. Nuovo Cimento 36, 521–526 (1983).

    Google Scholar 

  218. I. Senitzky, “Dissipation in quantum mechanics. The harmonic oscillator,”Phys. Rev. 119, 670–679 (1960).

    Google Scholar 

  219. Y. Shih and C. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,”Phys. Rev. Lett. 61, 2921–2924 (1988).

    Google Scholar 

  220. A. Shimony, “Role of the observer in quantum theory,”Am. J. Phys. 31, 755–773 (1963).

    Google Scholar 

  221. Y. Sinai, “On foundations of the ergodic conjecture for one dynamical system of statistical mechanics,”Dokl. Akad. Nauk 153, 1261–1264 (1963); “Dynamical systems with elastic reflexion,”Usp. Mat. Nauk 25, 141–192 (1970) (in Russian).

    Google Scholar 

  222. J. Six, “Test of the nonseparability of theK 0946-20 system,”Phys. Lett. B 114, 200–202 (1982).

    Google Scholar 

  223. B. Spassky and A. Moskovsky, “On non-locality in quantum physics,”Usp. Fiz. Nauk 142, 599–617 (1984) (in Russian).

    Google Scholar 

  224. S. Srivastava, Vishwamittar, and I. S. Minhas, “On the quantization of linearly damped harmonic oscillator,”J. Math. Phys. 32, 1510–1515 (1991).

    Google Scholar 

  225. P. Stamp, “Influence of paramagnetic and Kondo impurities on macroscopic quantum tunneling in SQUID's,”Phys. Rev. Lett. 61, 2905–2908 (1988).

    Google Scholar 

  226. Henry Stapp, “Gauge-fields and integrated quantum-classical theory,” Ref. 92, pp. 326–335.

    Google Scholar 

  227. Stephen Summers and Reinhold Werner, “The vacuum violates Bell's inequalties,”Phys. Lett. A 110, 257–259 (1985).

    Google Scholar 

  228. Stephen Summers and Reinhold Werner, “Bell's inequalities and quantum field theory. I. General setting,”J. Math. Phys. 28, 2440–2447 (1987).

    Google Scholar 

  229. Stephen Summers and Reinhold Werner, “Bell's inequalities and quantum field theory. II. Bell inequaltities are maximally violated in the vacuum,”J. Math. Phys. 28, 2448–2456 (1987).

    Google Scholar 

  230. Stephen Summers and Reinhold Werner, “Maximal violation of Bell's inequalities is generic in quantum field theory,”Commun. Math. Phys. 110, 247–259 (1987).

    Google Scholar 

  231. G. Svetlichny, “Distinguishing three-body from two-body nonseparability by a Bell-type inequality,”Phys. Rev. D 35, 3066–3069 (1987).

    Google Scholar 

  232. Paola Tombesi and Antonio Mecozzi, “Generation of macroscopically distinguishable quantum states and detection by the squeezed-vacuum technique,” Ref. 246, pp. 1700–1709.

    Google Scholar 

  233. H. Treder, inAstrofisica e Cosmologia, Gravitazione, Quanti e Relatività (Giunti Barbera, Firenze, 1979).

    Google Scholar 

  234. Boris Tsirelson, “In comparison to what is the Planck constant small?” (to appear).

  235. Boris Tsirelson, “Quantum analogs of Bell's inequalities: the case of two spacelike separated domains,” inProblems of the Theory of Probability Distributions IX, Math. Inst. Steklov (LOMI), Vol. 142 (1985), pp. 174–194 (in Russian).

  236. Boris Tsirelson, “On a formal description of quantum systems that are similar to systems of stochastic automata,” inProceedings II School-Seminar on Locally Interacting Systems and Their Application in Biology, R. L. Dobrushin, V. I. Kryukov, and A. L. Toom, ed., (Biological Centre Acad. Sci. USSR, Pushchino, Moscow Region, 1979), pp. 100–138 (in Russian).

    Google Scholar 

  237. W. G. Unruh, “Quantum coherence, wormholes, and the cosmological constant,”Phys. Rev. D 40, 1053–1063 (1989).

    Google Scholar 

  238. W. G. Unruh and Wojciech H. Zurek, “Reduction of a wave packet in quantum Brownian motion,”Phys. Rev. D 40, 1071–1094 (1989).

    Google Scholar 

  239. Leon Van Hove, “Quantum-mechanical perturbations giving rise to a statistical transport equation,”Physica 21, 517–540 (1955).

    Google Scholar 

  240. Leon Van Hove, “Energy corrections and persistent perturbation effects in continuous spectra 2. The perturbed stationary states,”Physica 22, 343–354 (1956); “The approach to equilibrium in quantum statistics”23, 411–480 (1957); “The ergodic behavior of quantum many-body systems,”25, 268–276 (1959).

    Google Scholar 

  241. A. M. Vershik and B. S. Tsirelson, “Formulation of Bell-type problems and ‘noncommutative’ convex geometry,” to appear in:Ad. Sov. Math. 9, 95–114 AMS.

  242. John von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, New York, 1932). English translation:Mathematical foundations of quantum mechanics (Princeton University Press, Princeton, New Jersey, 1955).

    Google Scholar 

  243. Milan Vujičic and Fedor Herbut, “Distant correlations in quantum mechanics,” Ref. 157, pp. 677–689.

    Google Scholar 

  244. H. Wakita, “Measurement in quantum mechanics,”Prog. Theor. Phys. 23, 32–40 (1960); “Measurement in quantum mechanics. II. Reduction of a wave packet,”27, 139–144 (1962); “Measurement in quantum mechanics. III. Macroscopic measurement and statistical operators,”27, 1156–1164 (1962).

    Google Scholar 

  245. D. Walls and G. Milburn, “Effect of dissipation on quantum coherence,”Phys. Rev. A 31, 2403–2408 (1985).

    Google Scholar 

  246. W. H. Weber (ed.), “Squeezed States of the Electromagnetic Field,”J. Opt. Soc. Am. B 4(10) (1987).

  247. Carl Weizsacker, “Heisenberg's philosophy,” Ref. 156, pp. 277–293.

    Google Scholar 

  248. Carl Weizsacker, “Quantum theory and space-time,” Ref. 157, pp. 223–237.

    Google Scholar 

  249. John Archibald Wheeler, “Assessment of Everett's ‘relative state’ formulation of quantum theory,”Rev. Mod. Phys. 29, 463–465 (1957).

    Google Scholar 

  250. M. Whitaker, “The relative states and many-worlds interpretations of quantum mechanics and the EPR problem,”J. Phys. A 18, 253–264 (1985).

    Google Scholar 

  251. Eugene Wigner, “Remarks on the mind-body question,” inThe Scientist Speculates, I. J. Good, ed. (Heinemann, London 1962).

    Google Scholar 

  252. C. H. Woo, “Why the classical-quantal dualism is still with us,”Am. J. Phys. 54, 923–928 (1986).

    Google Scholar 

  253. William Wootters and Wojciech Zurek, “Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle,”Phys. Rev. D 19, 473–484 (1979).

    Google Scholar 

  254. B. Yurke and D. Stoler, “Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion,”Phys. Rev. Lett. 57, 13–16 (1986).

    Google Scholar 

  255. H. Zeh, “Measurement in Bohm's versus Everetts's quantum theory,”Found. Phys. 18, 723–730 (1988).

    Google Scholar 

  256. H. Zeh, “Emergence of classical time from a universal wavefunction,”Phys. Lett. A 116, 9–12 (1986).

    Google Scholar 

  257. H. Zeh, “Quantum theory and time asymmetry,”Found. Phys. 9, 803–818 (1979).

    Google Scholar 

  258. H. Zeh, “Toward a quantum theory of observation,”Found. Phys. 3, 109–116 (1973).

    Google Scholar 

  259. H. Zeh, “On the irreversibility of time and observation in quantum theory,” Ref. 59, pp. 263–273.

    Google Scholar 

  260. H. Zeh, “On the interpretation of measurement in quantum theory,”Found. Phys. 1, 69–76 (1970).

    Google Scholar 

  261. V. Zelevinsky, “Some problems of dynamics of heavy ions interactions,”Proceedings of XII Winter LIN Ph School, Leningrad, 1977, pp. 53–96 (in Russian).

  262. Wojciech Zurek, “Quantum measurements and the environment induced transition from quantum to classical,” Preprint LA-UR-89-25, Los Alamos (1988).

  263. Wojciech Zurek, “Reduction of the wavepacket: How long does it take?”Frontiers of Nonequilibrium Statistical Physics, G. T. Moore,et al., ed. (Plenum Press, New York 1986), pp. 145–151.

    Google Scholar 

  264. Wojciech Zurek, “Reduction of the wave packet and environment-induced superselection,” Ref. 92, pp. 89–97.

    Google Scholar 

  265. Wojciech Zurek, “Environment-induced superselection rules,”Phys. Rev. D 26, 1862–1880 (1982).

    Google Scholar 

  266. Wojciech Zurek, “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?,”Phys. Rev. D 24, 1516–1525 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalfin, L.A., Tsirelson, B.S. Quantum/classical correspondence in the light of Bell's inequalities. Found Phys 22, 879–948 (1992). https://doi.org/10.1007/BF01889686

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01889686

Keywords

Navigation