Skip to main content
Log in

Multi-Hop Cyclic Joint Remote State Preparation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a scheme for multi-hop cyclic joint remote state preparation by fusing the ideas of multi-hop teleportation and cyclic joint remote state preparation. To realize n −hop cyclic joint remote state preparation, we suppose that there are n + 2 subsystems. S1, S2 and S3 constitute a cycle in the first hop. Based on it, S3, S4 and S5 form another cycle as the second hop. Notably, S3 is an intermediate node used to connect these two hops. Then, we can obtain n cycles (hops) in the same way. Specially, if n + 2 is even, there is no way to constitute n cycles. To solve this problem, we propose two different schemes. Our schemes can realize the cyclic JRSP hop by hop via the intermediate node with n + 2 subsystems. Even without direct quantum channel to connect, these subsystems also can participate in the process of preparation through intermediate nodes. Furthermore, we consider the security of our scheme by analyzing inside attack and outside attack, and we found that the success of outside attack is not affected by the attacking time. Finally, we generalized a formula to calculate the efficiency of bidirectional JRSP, which is also suitable for cyclic JRSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  4. Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)

    Article  ADS  Google Scholar 

  5. Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55(11), 4972–4986 (2016)

    Article  MATH  Google Scholar 

  6. Wang, X.J., An, L.X., Yu, X.T., Zhang, Z.C.: Multilayer quantum secret sharing based on GHZ state and generalized Bell basis measurement in multiparty agents. Phys. Lett. A 381(38), 3282–3288 (2017)

    Article  ADS  Google Scholar 

  7. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, S.S., Nie, Y.Y., Hong, Z.H., Yi, X.J., Huang, Y.B.: Controlled teleportation using four-particle cluster state. Commun. Theor. Phys. 50(3), 633 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48(5), 1485–1490 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum. Inf. 9(supp01), 389–403 (2011)

    Article  MATH  Google Scholar 

  11. Long, L., Li, H., Zhou, P., Fan, C., Yin, C.: Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N + 2)-particle nonmaximally entangled state as the quantum channel. Sci China Phys Mech. 54(3), 484–490 (2011)

    Article  Google Scholar 

  12. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)

    Article  MATH  Google Scholar 

  13. Li, W., Zha, X. W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(9), 3927–3933 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Bidirectional controlled quantum teleportation in the three-dimension system. Int. J. Theor. Phys. 57(7), 2233–2240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62 (1), 012313 (2000)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  17. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)

    Article  ADS  Google Scholar 

  18. Xia, Y., Song, J., Song, H.: S.: Multiparty remote state preparation. J Phys B: At. Mol. Opt. Phys. 40(18), 3719 (2007)

    Article  ADS  Google Scholar 

  19. Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(16), 4088–4093 (2011)

    Article  ADS  Google Scholar 

  20. Zhang, Y.G., Dou, G., Zha, X.W.: Controlled remote state preparation of an arbitrary two-qubit state by using two sets of four-qubit GHZ states. Int. J. Theor. Phys. 57(2), 506–515 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  22. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  23. Zha, X.W., Song, H.Y., Ma, G.L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state. arXiv:1006.0052 (2010)

  24. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)

    Article  Google Scholar 

  25. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52(11), 3870–3873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state[J]. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Li, Y., Jin, X.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments[J] . Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. process. 15(5), 2169–2179 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional quantum teleportation of a class of n-qubit states by using (2n + 2)-qubit entangled states as quantum channel. Int. J. Theor. Phys. 57(1), 175–183 (2018)

    Article  MATH  Google Scholar 

  31. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, S.Y., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver[J]. Quantum Inf. Process. 13(9), 1979–2005 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zhang, C.Y., Bai, M.Q., Zhou, S.Q.: Cyclic joint remote state preparation in noisy environment. Quantum Inf. Process. 17(6), 146 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wang, K., Yu, X.T., Lu, S.L., Gong, Y.X.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation[J]. Phys. Rev. A 89(2), 022329 (2014)

    Article  ADS  Google Scholar 

  35. Yu, X.T., Xu, J., Zhang, Z.C.: Distributed wireless quantum communication networks. Chin. Phys. B 22(9), 090311 (2013)

    Article  ADS  Google Scholar 

  36. Shi, H.L., Yu, X.T., Cai, X.F., Gong, Y.X., Zhang, Z.C.: Quantum information transmission in the quantum wireless multihop network based on Werner state. Chin. Phys. B 24(5), 050308 (2015)

    Article  ADS  Google Scholar 

  37. Zhang, Z.H., Shu, L., Mo, Z.W.: Quantum teleportation and superdense coding through the composite W-Bell channel[J]. Quantum Inf. Process. 12(5), 1957–1967 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Zhang, Z.H., Wang, J.W., Sun, M.: Multihop Teleportation via the Composite of Asymmetric W State and Bell State[J]. Int. J. Theor. Phys. 57(12), 3605–3620 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284(5), 1457–1460 (2011)

    Article  ADS  Google Scholar 

  40. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Eur. Phys. Lett. 87(6), 60008 (2009)

    Article  ADS  Google Scholar 

  41. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J Phys B: At. Mol. Opt. Phys. 41(14), 145506 (2008)

    Article  ADS  Google Scholar 

  42. Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. process. 17(7), 175 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.11671284) and Sichuan Provincial Natural Science Foundation of China (Grant No.2015JY0002, 2017JY0197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-qiang Bai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Cy., Bai, Mq. Multi-Hop Cyclic Joint Remote State Preparation. Int J Theor Phys 59, 1277–1290 (2020). https://doi.org/10.1007/s10773-020-04405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04405-4

Keywords

Navigation