Skip to main content
Log in

Quantum Cyclic Controlled Teleportation of Unknown States with Arbitrary Number of Qubits by Using Seven-qubit Entangled Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A novel theoretical scheme is proposed to implement quantum cyclic controlled teleportation (QCYCT) of three unknown states by utilizing a seven-qubit entangled state as the quantum channel, where Alice can transmit an unknown m-qubit state to Bob, Bob can transmit an unknown n-qubit state to Candy and Candy can transmit an unknown t-qubit state to Alice under the control of the supervisor David. Only controlled-not (CNOT) operations, Bell-state measurements, a single-qubit measurement and appropriate unitary operations are needed in this scheme, which can be realized in experiment easily. The desired state of each communicator can be recovered deterministically by using auxiliary particles. The direction of the cyclic controlled teleportation can also be altered throughout changing the selection of the particle pairs to be measured of each communicator. Compared with the previous QCYCT schemes, the proposed scheme possesses higher intrinsic efficiency in most cases and can transfer as many qubits as the communicators desire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Shi, B.S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Rev. Lett. A 296(296), 161–164 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Li, D.C., Cao, Z.L.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47(3), 464–466 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Wang, L.Q., Zha, X.W.: Two schemes of teleportation one-particle state by a three-particle GHZ state. Opt. Commun. 283(20), 4118–4121 (2010)

    Article  ADS  Google Scholar 

  5. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  6. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Quantum teleportation of an arbitrary N-qubit state via GHZ-like states. Int. J. Theor. Phys. 55(3), 1601–1611 (2016)

    Article  Google Scholar 

  7. Sisodia, M., Pathak, A.: Comment on ”Quantum Teleportation of Eight-Qubit State via Six-qubit Cluster State”. Int. J. Theor. Phys. 57(2), 2213–2217 (2018)

    Article  MathSciNet  Google Scholar 

  8. Peng, C.Z., Yang, T., Bao, X.H., Zhang, J., Jin, X.M., Feng, F.Y., Yang, B., Yang, J., Yin, J., Zhang, Q., Li, N., Tian, B.L., Pan, J.W.: Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94(15), 150501 (2004)

    Article  Google Scholar 

  9. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., et al.: Experimental free-space quantum teleportation. Nat. Photon. 2(4), 376–381 (2010)

    Article  ADS  Google Scholar 

  10. Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Liu, C., Liao, S.K., Zhou, F., Jiang, Y., Cai, X.D., Xu, P., Pan, G.S., Jia, J.J., Huang, Y.M., Yin, H., Wang, J.Y., Chen, Y.A., Peng, C.Z., Pan, J.W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185–188 (2012)

    Article  ADS  Google Scholar 

  11. Ma, X.S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489(7415), 269–273 (2012)

    Article  ADS  Google Scholar 

  12. Yin, J., Cao, Y., Li, Y.H., Liao, S.K., Zhang, L., Ren, J.G., Cai, W.Q., Liu, W.Y., Li, B., Dai, H., Li, G.B., Lu, Q.M., Gong, Y.H., Xu, Y., Li, S.L., Li, F.Z., Yin, Y.Y., Jiang, Z.Q., Li, M., Jia, J.J., Ren, G., He, D., Zhou, Y.L., Zhang, X.X., Wang, N., Chang, X., Zhu, Z.C., Liu, N.L., Chen, Y.A., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)

    Article  Google Scholar 

  13. Karlsson, A., Bournnane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893–897 (2005)

    Article  Google Scholar 

  15. Huelga, S.F., Vaccaro, J.A., Chees, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  Google Scholar 

  16. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Chen, Y.X., Du, J., Liu, S.X., Wang, X.H.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 201–210 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A. 74, 054303 (2006)

    Article  ADS  Google Scholar 

  19. Jiang, M.: An optimized quantum information splitting scheme with multiple controllers. Quantum Inf. Process. 15(12), 5073–5087 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  Google Scholar 

  21. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007)

    Article  ADS  Google Scholar 

  22. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Europhys. Lett. 84(5), 50001 (2008)

    Article  ADS  Google Scholar 

  23. Li, X.H., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90, 052305 (2014)

    Article  ADS  Google Scholar 

  24. Naseri, N., Raji, M.A., Hantehzadeh, M.R., Farouk, A., Boochani, A., Solaymani, S.: A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation. Quantum Inf. Process. 14(11), 4279–4295 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  26. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)

    Article  Google Scholar 

  27. Thapliya, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(2), 4601–4614 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 384–387 (2016)

    Article  Google Scholar 

  29. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(10), 4197–4204 (2016)

    Article  Google Scholar 

  30. Sang, M.H.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 380–383 (2016)

    Article  Google Scholar 

  31. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3 \(\leftrightarrow \) 2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56(10), 3285–3296 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhou, R.G., Zhang, Y.N.: Bidirectional quantum controlled teleportation of Three-Qubit state by using GHZ states. Int. J. Theor. Phys. 58(10), 3594–3601 (2019)

    Article  MathSciNet  Google Scholar 

  34. Sang, Z.W.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57(12), 3835–3838 (2018)

    Article  MathSciNet  Google Scholar 

  35. Li, Y.H., Yi, Q., Sang, M.H., Nie, Y.Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58(5), 1541–1545 (2019)

    Article  Google Scholar 

  36. Shao, Z.L., Long, Y.X.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state. Int. J. Theor. Phys. 58(6), 1957–1967 (2019)

    Article  MathSciNet  Google Scholar 

  37. Choudhury, B.S., Samanta, S.: A controlled protocol for asymmetric cyclic (A ⇒ B ⇒ C ⇒ A) quantum state transfer between three parties. Phys Scr. https://doi.org/10.1088/1402-4896/ab3d43 (2019)

  38. Nie, Y.Y., Sang, M.H.: Asymmetric bidirectional controlled teleportation via seven-photon entangled state. Int. J. Theor. Phys. 56(11), 3452–3454 (2017)

    Article  MathSciNet  Google Scholar 

  39. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  40. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the [National Natural Science Foundation of China] under Grant [number 61801218]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiya Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Li, L. & Zhang, H. Quantum Cyclic Controlled Teleportation of Unknown States with Arbitrary Number of Qubits by Using Seven-qubit Entangled Channel. Int J Theor Phys 59, 1017–1030 (2020). https://doi.org/10.1007/s10773-019-04367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04367-2

Keywords

Navigation