Skip to main content
Log in

Permutation Symmetric Hypergraph States and Multipartite Quantum Entanglement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We demonstrate that a quantum hypergraph state is k-separable if and only if the hypergraph has k-connected components. The permutation symmetric states remains invariant under any permutation. We introduce permutation symmetric states generated by hypergraphs and describe their combinatorial structures. This combinatorial perspective insists us to investigate multi-partite entanglement of permutation symmetric hypergraph states. Using generalised concurrence we measure entanglement up to ten qubits. A number of examples of these states are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akhound, A., Haddadi, S., Motlagh, M.A.C.: Analyzing the entanglement properties of graph states with generalized concurrence. Mod. Phys. Lett. B 33(10), 1950118 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  2. Balakuntala, S., Paul, G.: Quantum error correction using hypergraph states. arXiv:1708.03756 (2017)

  3. Baumgratz, T., Cramer, M., Plenio, M.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  4. Belhaj, A., Belhaj, A., Machkouri, L., Sedra, M.B., Ziti, S.: Weighted graph theory representation of quantum information inspired by lie algebras. arXiv:1609.03534 (2016)

  5. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: an Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  6. Bhaskara, V.S., Panigrahi, P.K.: Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using lagrange’s identity and wedge product. Quantum Inf. Process 16(5), 118 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Blatt, R., Monroe, C., Tombesi, P.: Quantum coherence and entanglement. J. Opt. B: Quantum Semiclassical Opt. 3(1) (2001)

  8. Bretto, A.: Hypergraph Theory. An Introduction. Mathematical Engineering. Cham, Springer (2013)

    Book  Google Scholar 

  9. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  10. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439(1907), 553–558 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dutta, S.: A boolean functions theoretic approach to quantum hypergraph states and entanglement. arXiv:1811.00308 (2018)

  12. Dutta, S.: Constructing non-isomorphic signless laplacian cospectral graphs. arXiv:1808.04054 (2018)

  13. Dutta, S., Adhikari, B.: Construction of cospectral graphs. arXiv:1808.03490 (2018)

  14. Dutta, S., Adhikari, B., Banerjee, S.: Seidel switching for weighted multi-digraphs and its quantum perspective. arXiv:1608.07830 (2016)

  15. Dutta, S., Adhikari, B., Banerjee, S.: Quantum discord of states arising from graphs. Quantum Inf. Process 16(8), 183 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dutta, S., Adhikari, B., Banerjee, S.: Condition for zero and nonzero discord in graph laplacian quantum states. Int. J. Quantum Inform. 17(02), 1950018 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Dutta, S., Adhikari, B., Banerjee, S., Srikanth, R.: Bipartite separability and nonlocal quantum operations on graphs. Phys. Rev. A 94(1), 012306 (2016)

    Article  ADS  Google Scholar 

  18. Ekert, A., Knight, P.L.: Entangled quantum systems and the schmidt decomposition. Am. J. Phys. 63(5), 415–423 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  19. Franco, R.L., Compagno, G.: Quantum entanglement of identical particles by standard information-theoretic notions. Sci. Rep. 6, 20603 (2016)

    Article  Google Scholar 

  20. Gachechiladze, M., Gühne, O., Miyake, A.: Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states. arXiv:1805.12093 (2018)

  21. Ghio, M., Malpetti, D., Rossi, M., Bruß, D., Macchiavello, C.: Multipartite entanglement detection for hypergraph states. J. Phys. A Math. Theor. 51(4), 045302 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Goswami, A.K., Panigrahi, P.K.: Quantum coherence and holevo bound. arXiv:1703.08700 (2017)

  23. Goyeneche, D., Alsina, D., Latorre, J.I., Riera, A., Życzkowski, K.: Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices. Phys. Rev. A 92(3), 032316 (2015)

    Article  ADS  Google Scholar 

  24. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp 212–219. ACM (1996)

  25. Gühne, O., Cuquet, M., Steinhoff, F.E., Moroder, T., Rossi, M., Bruß, D., Kraus, B., Macchiavello, C.: Entanglement and nonclassical properties of hypergraph states. J. Phys. A Math. Theor. 47(33), 335303 (2014)

    Article  MathSciNet  Google Scholar 

  26. Haddadi, S., Akhound, A., Motlagh, M.A.C.: Efficient entanglement measure for graph states. Int. J. Theor. Phys. arXiv:1809.02019 (2019)

  27. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. arXiv:quant-ph/0602096 (2006)

  28. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022 (1997)

    Article  ADS  Google Scholar 

  29. Joshi, A., Singh, R., Kumar, A.: Concurrence and three-tangle of the graph. Quantum Inf. Process 17(12), 327 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lockhart, J.: Combinatorial Structures in Quantum Information. Ph.D. thesis UCL, (University College London) (2019)

  31. Lockhart, J., Severini, S.: Combinatorial entanglement. arXiv:1605.03564 (2016)

  32. Man, Z.X., Xia, Y.J., Franco, R.L.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  33. Miller, J., Miyake, A.: Latent computational complexity of symmetry-protected topological order with fractional symmetry. Phys. Rev. Lett. 120(17), 170503 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Nagle, B., Rödl, V., Schacht, M.: An algorithmic hypergraph regularity lemma. Random Struct. Algoritm. 52(2), 301–353 (2018)

    Article  MathSciNet  Google Scholar 

  35. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83(2), 436 (1999)

    Article  ADS  Google Scholar 

  36. Nielsen, M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57(1), 147–161 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. Pal, S.P., Kumar, S., Srikanth, R.: Multipartite entanglement configurations: combinatorial offshoots into (hyper) graph theory and their ramifications. In: AIP Conference Proceedings. AIP, vol. 864, pp 156–170 (2006)

  38. Qu, R., Li, Z.S., Wang, J., Bao, Y.R.: Multipartite entanglement and hypergraph states of three qubits. Phys. Rev. A 87(3), 032329 (2013)

    Article  ADS  Google Scholar 

  39. Qu, R., Ma, Y.P., Bao, Y.R., Wang, J., Li, Z.S.: Entropic measure and hypergraph states. Quantum Inf. Process 13(2), 249–258 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  40. Qu, R., Ma, Y.P., Wang, B., Bao, Y.R.: Relationship among locally maximally entangleable states, w states, and hypergraph states under local unitary transformations. Phys. Rev. A 87(5), 052331 (2013)

    Article  ADS  Google Scholar 

  41. Qu, R., Wang, J., Li, Z.S., Bao, Y.R.: Encoding hypergraphs into quantum states. Phys. Rev. A 87(2), 022311 (2013)

    Article  ADS  Google Scholar 

  42. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  43. Rossi, M., Huber, M., Bruß, D., Macchiavello, C.: Quantum hypergraph states. New J. Phys. 15(11), 113022 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. Schmidt, E.: Zur theorie der linearen und nichtlinearen integralgleichungen. Math. Ann. 63(4), 433–476 (1907)

    Article  MathSciNet  Google Scholar 

  45. Simmons, D., Coon, J., Datta, A.: The quantum theil index: characterizing graph centralization using von neumann entropy. arXiv:1707.07906 (2017)

  46. Simmons, D.E., Coon, J.P., Datta, A.: Symmetric laplacians, quantum density matrices and their von-neumann entropy. Linear Algebra Appl. 532, 534–549 (2017)

    Article  MathSciNet  Google Scholar 

  47. Singh, S.K., Pal, S.P., Kumar, S., Srikanth, R.: A combinatorial approach for studying local operations and classical communication transformations of multipartite states. J. Math. Phys. 46(12), 122105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  48. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  49. Szalay, S.: Multipartite entanglement measures. Phys. Rev. A 92(4), 042329 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  50. Takeuchi, Y., Morimae, T.: Verification of many-qubit states. Phys. Rev. X 8(2), 021060 (2018)

    Google Scholar 

  51. Takeuchi, Y., Morimae, T., Hayashi, M.: Quantum computational universality of hypergraph states with pauli-x and z basis measurements. arXiv:1809.07552 (2018)

  52. Tóth, G., Gühne, O.: Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94(6), 060501 (2005)

    Article  ADS  Google Scholar 

  53. Wagner, T., Kampermann, H., Bruß, D.: Analysis of quantum error correction with symmetric hypergraph states. J. Phys. A Math. Theor. 51(12), 125302 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  54. Xiong, F.L., Zhen, Y.Z., Cao, W.F., Chen, K., Chen, Z.B.: Qudit hypergraph states and their properties. Phys. Rev. A 97(1), 012323 (2018)

    Article  ADS  Google Scholar 

  55. Zhu, H., Hayashi, M.: Efficient verification of hypergraph states. arXiv:1806.05565 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriyo Dutta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Sarkar, R. & Panigrahi, P.K. Permutation Symmetric Hypergraph States and Multipartite Quantum Entanglement. Int J Theor Phys 58, 3927–3944 (2019). https://doi.org/10.1007/s10773-019-04259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04259-5

Keywords

Navigation