Skip to main content
Log in

Design of Novel Coplanar Counter Circuit in Quantum Dot Cellular Automata Technology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

One of the emerging technology that can be used for replacing CMOS technology is Quantum-dot Cellular Automata (QCA) technology. Counter circuits are widely used circuits in the design of digital circuits. This paper presents and evaluates circuits for 2-, 3-, 4-, and 5-bit coplanar counter in the QCA technology. The designed QCA coplanar counter circuits are based on the modified D-Flip-Flop (D-FF) circuit that is designed in this paper. The designed QCA circuits are implemented and verified by using QCADesigner tool version 2.0.3. The results show that the designed circuits for 2-, 3-, 4-, and 5-bit coplanar counter contain 44 (0.03 μm2), 93 (0.07 μm2), 160 (0.13 μm2), and 245 (0.2 μm2) quantum cells (area). The comparison results indicate that the designed circuits have advantages compared to other QCA circuits in terms of cost, area, and cell count.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sharma, V.K., Pattanaik, M., Raj, B.: INDEP approach for leakage reduction in nano scale CMOS circuits. Int. J. Electronics. 102(2), 200–215 (2015)

    Article  Google Scholar 

  2. Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability. IEEE Trans. Device Mater. Reliab. 4(1), 99–109 (2004)

    Article  Google Scholar 

  3. Anvarifard, M.K.: An accurate compact model to extract the important physical parameters of an experimental nano scale short-channel SOI MOSFET. J. Comput. Electron. 1–7 (2019)

  4. Karimi, A., Rezai, A.: Improved device performance in CNTFET using genetic algorithm. ECS J. Solid State Science and Technology. 6(1), 9–12 (2017)

    Article  Google Scholar 

  5. Bakshi, U. and A. Godse.: The Depletion Mode MOSFET. Electronic Circuits (2007)

  6. Sen, B., Mukherjee, R., Mohit, K., Sikdar, B.K.: Design of reliable universal QCA logic in the presence of cell deposition defect. Int. J. Electron. 104(8), 1285–1297 (2017)

    Article  Google Scholar 

  7. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4(1), 49–57 (1993)

    Article  ADS  Google Scholar 

  8. Anvarifard, M.K.: Modeling a double-halo-doping carbon nanotube FET in DC and AC operations. ECS J. Solid State Sci. Technol. 7(12), 209–216 (2018)

    Article  Google Scholar 

  9. Liu W. W., O’Neill, M., Earl, E.: Quantum-dot Cellular Automata. 11–44 (2013)

  10. Seminario, J.M., Derosa, P.A., Cordova, L.E., Bozard, B.H.: A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans. Nanotechnol. 3(1), 215–218 (2004)

    Article  ADS  Google Scholar 

  11. Mehrad, M., Zareiee, M., Orouji, A.A.: Controlled kink effect in a novel high-voltage LDMOS transistor by creating local minimum in energy band diagram. IEEE Trans. Electron Devices. 64(10), 4213–4218 (2017)

    Article  ADS  Google Scholar 

  12. Zareiee, M.: High performance nano device with reduced short channel effects in high temperature applications. ECS J. Solid State Science and Technology. 6(7), 75–78 (2017)

    Article  Google Scholar 

  13. Mortaza Shafizadeh, M., Rezai, A.: Improved device performance in a CNTFET using La22O33high-κκ dielectrics. J. Comput. Electron. 16(2), 221–227 (2017)

    Article  Google Scholar 

  14. Karimi, A., Rezai, A.: A design methodology to optimize the device performance in CNTFET. ECS J. Solid State Science and Technology. 6(8), 97–102 (2017)

    Article  Google Scholar 

  15. Kong, K., Shang, Y., Lu, R.: Counter designs in quantum-dot cellular automata. IEEE International Conference on Nanotechnology (IEEE-NANO), pp. 1130–1134. (2010)

  16. Angizi, S., Moaiyeri, M.H., Farrokhi, S., Navi, K., Bagherzadeh, N.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess. Microsyst. 39(7), 512–520 (2015)

    Article  Google Scholar 

  17. Aghababa, H., Yazdinejad, M. H., Afzali, A., Forouzandeh, B.: Simplified quantum-dot cellular automata implementation of counters. IEEE International Caribbean Conference Devices, Circuits and Systems (ICCDCS), pp. 1–4. (2008)

  18. Sarmadi, S., Azimi, S., Sheikhfaal, S., Angizi, S.: Designing counter using inherent capability of quantum-dot cellular automata loops. Int. J. Modern Education and Computer Science. 7(9), 22–28 (2015)

    Article  Google Scholar 

  19. Angizi, S., Sayedsalehi, S., Roohi, A., Bagherzadeh, N., Navi, K.: Design and verification of new n-bit quantum-dot synchronous counters using majority function-based JK flip-flops. J. Circuits, Systems and Computers. 24(10), 15501531–15501517 (2015)

    Article  Google Scholar 

  20. Sheikhfaal, S., Navi, K., Angizi, S., Navin, A.H.: Designing high speed sequential circuits by quantum-dot cellular automata: memory cell and counter study. Quantum Matter. 4(2), 190–197 (2015)

    Article  Google Scholar 

  21. Sangsefidi, M., Abedi, D., Yoosefi, E., Karimpour, M.: High speed and low cost synchronous counter design in quantum-dot cellular automata. Microelectron. J. 73, 1–11 (2018)

    Article  Google Scholar 

  22. Abutaleb, M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)

    Article  Google Scholar 

  23. Yang, X., Cai, L., Zhao, X., Zhang, N.: Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron. J. 41(1), 56–63 (2010)

    Article  Google Scholar 

  24. Divshali, M.N., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF. Int. J. Theor. Phys. 57(11), 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Adelnia, Y., Rezai, A.: A novel adder circuit design in quantum-dot cellular automata technology. Int. J. Theor. Phys. 58(1), 184–200 (2019)

    Article  MATH  Google Scholar 

  26. Roshany, H.R., Rezai, A.: Novel efficient circuit design for multilayer QCA RCA. Int. J. Theor. Phys. 58(6), 1745–1757 (2019)

  27. Mokhtari, D., Rezai, A., Rashidi, H., Rabiei, F., Karimi, A.: Design of novel efficient full adder circuit for quantum-dot cellular automata technology. Electron.Energ. 31(2), 279–285 (2018)

    Google Scholar 

  28. Arani, I.E., Rezai, A.: Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology. J. Comput. Electron. 17(4), 1771–1779 (2018)

    Article  Google Scholar 

  29. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results phys. 7, 1389–1395 (2017)

    Article  ADS  Google Scholar 

  30. Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. J. Engineering. 1(1), 394–402 (2017)

    Google Scholar 

  31. Balali, M., Rezai, A.: Design of low-Complexity and High-Speed Coplanar Four-bit Ripple Carry Adder in QCA technology. Int. J. Theor. Phys. 57(7), 1948–1960 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    Article  Google Scholar 

  33. Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano- Electron. Phys. 9(1), 1012–1011 (2017)

    Article  Google Scholar 

  34. Das, J.C., De, D.: Circuit switching with quantum-dot cellular automata. Nano Commun. Networks. 14, 16–28 (2017)

    Article  Google Scholar 

  35. Abutaleb, M.: A novel true random number generator based on QCA nano computing. Nano Commun. Networks. 17, 14–20 (2018)

    Article  Google Scholar 

  36. Shiri, A., Rezai, A., Mahmoodian, H.: Design of efficient coplanar 1-bit comparator circuit in QCA technology. FACTA UNIVERSITATIS Series: Electron. Energ. 32(1), 119–128 (2019)

    Google Scholar 

  37. Mokhtarii, R., Rezai, A.: Investigation and Design of Novel Comparator in quantum-dot cellular automata technology. J. Nano, Electr, Phys. 10(5), 05014–1 - 05014-4 (2018)

    Google Scholar 

  38. Sridharan, K., Pudi, V.: Design of arithmetic circuits in quantum dot cellular automata nanotechnology. (2015)

  39. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: A novel design of 5-input majority gate in quantum-dot cellular automata technology. In: IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 13–16 (2017)

  40. Kassa, S.R., Nagaria, R.K., Karthik, R.: Energy efficient neoteric design of a 3-input majority gate with its implementation and physical proof in quantum dot cellular automata. Nano Communication Networks. 15, 28–40 (2018)

    Article  Google Scholar 

  41. Bahar, A., Waheed S., Habib, M.: A novel presentation of reversible logic gate in quantum-dot cellular automata (QCA). In: IEEE International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), pp. 1–6, (2014)

  42. Mano, M., Kime C. R., Martin, T.: Logic and Computer Design Fundamentals, USA: Pearson Education International. (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalhossein Rezai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niknezhad Divshali, M., Rezai, A. & Falahieh Hamidpour, S.S. Design of Novel Coplanar Counter Circuit in Quantum Dot Cellular Automata Technology. Int J Theor Phys 58, 2677–2691 (2019). https://doi.org/10.1007/s10773-019-04158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04158-9

Keywords

Navigation