Skip to main content
Log in

An Improved Quantum Voting Scheme

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An improved quantum voting scheme based on four-qubit Cluster state is presented in this paper. This program uses quantum key distribution protocol and quantum one-time pad to guarantee its unconditional security. Furthermore, we use the entanglement of four-qubit Cluster state instead of the controlled quantum teleportation in order to reduce the technical difficulty. The significant advantage of our scheme is that transmitted information capacity is twice as much as the capacity of other schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jan, J.K., Tai, C.C.: A secure electronic voting protocol with IC cards. J. Syst. Softw. 39(12), 93–101 (1997)

    Article  Google Scholar 

  2. Ku, W., Wang, S.D.: A secure and practical electronic voting scheme. Comput. Commun. 22(3), 279–286 (1999)

    Article  Google Scholar 

  3. Mosayeb, N., Gong, L.H., Monireh, N., Laleh, F.M.: An anonymous surveying protocol via Greenberger-Horne-Zeilinger states. Int. J. Theor. Phys. 55(10), 4436–4444 (2016)

    Article  MATH  Google Scholar 

  4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grover, L.K.: A fast quantum mechanical algorithm for database search. Twenty-Eighth ACM Symposium on Theory of Computing. 212–219 (1996)

  6. Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Theor. Phys. 55(2), 809–816 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hillery, M.: Quantum voting and privacy ptotection: first steps. Int. Soc. Opt Eng. https://doi.org/10.1117/2.1200610.0419 (2006)

  8. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  9. Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, H.J., Ding, L.Y., Yu, Y.F., Li, P.F.: A electronic voting scheme achieved by using quantum proxy signature. Int. J. Theor. Phys. 55(9), 4081–4088 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. Int. J. Theor. Phys. 56(10), 3019–3028 (2017)

    Article  ADS  MATH  Google Scholar 

  12. Liu, X.C.: Universal three-qubit entanglement generation based on linear optical elements and quantum non-demolition detectors. Int. J. Theor. Phys. 56(2), 427–436 (2017)

    Article  MATH  Google Scholar 

  13. Niu, X.F., Zhang, J.Z., Xie, S.C., Chen, B.Q.: A third-party e-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 57(8), 2563–2573 (2018)

    Article  MathSciNet  Google Scholar 

  14. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  15. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lo, H.K.: A simple proof of the unconditional security in quantum key distribution. J. Phys. A 34(35), 6957–6967 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2004)

    Article  ADS  Google Scholar 

  18. Cao, H.J., Ding, L.Y., Jiang, X.L., Li, P.F.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57(3), 674–681 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Paraoanu, G.S., Scutaru, H.: Fidelity for multimode thermal squeezed states. Phys. Rev. A. 61(2), 180–181 (2000)

    Article  Google Scholar 

  20. Weinstein, Y.S.: Entanglement sudden death as an indicator of fidelity in a four-qubit cluster state. Phys. Rev. A. 79(5), 1744–1747 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant No.2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities(Grant No.GK201402004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, XF., Zhang, JZ., Xie, SC. et al. An Improved Quantum Voting Scheme. Int J Theor Phys 57, 3200–3206 (2018). https://doi.org/10.1007/s10773-018-3837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3837-9

Keywords

Navigation