Skip to main content
Log in

Tunable Optomechanically Induced Transparency and Fano Resonance in Optomechanical System with Levitated Nanosphere

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We analytically investigate the phenomena of optomechanically induced transparency and Fano resonance in optomechanical system with levitated nanosphere trapped inside Fabry-Perot cavity. We report that mechanical oscillator and nanosphere play their independent role in our system. We demonstrate that, an OMIT window exists in the absence of coupling between the nanosphere and the cavity. However the interaction of nanosphere evolves to display fano profile, besides the OMIT window, in the output at the probe frequency. We also report that the Fano profile and the width of the OMIT window can be controlled simultaneously by appropriate system’s parameters. Within the experimental reach, based on our analytical results, we find that the optomechanical system with levitated nanosphere provides great flexibility to tune the OMIT and the Fano resonances by controlling the system’s parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harris, S.E., Field, J.E., Imamoǧlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  2. Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, Q., Chang, D., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 69 (2011)

    Article  ADS  Google Scholar 

  3. Lambropoulos, P., Zoller, P.: Autoionizing states in strong laser fields. Phys. Rev. A 24, 379 (1981)

    Article  ADS  Google Scholar 

  4. Bachau, H., Lambropoulos, P., Shakeshaft, R.: Theory of laser-induced transitions between autoionizing states of He. Phys. Rev. A 34, 4785 (1986)

    Article  ADS  Google Scholar 

  5. Rzaznewski, K., Eberly, J.H.: Confluence of bound-free coherences in laser-induced autoionization. Phys. Rev. Lett. 47, 408 (1981)

    Article  ADS  Google Scholar 

  6. Deng, Z., Eberly, J.H.: Double-resonance effects in strong-field autoionization. J. Opt. Soc. Am. B 1, 102 (1984)

    Article  ADS  Google Scholar 

  7. Ravi, S., Agarwal, G.S.: Absorption spectroscopy of strongly perturbed bound-continuum transitions. Phys. Rev. A 35, 3354 (1987)

    Article  ADS  Google Scholar 

  8. Haan, S.L., Agarwal, G.S.: Stability of dressed states against radiative decay in strongly coupled bound-continuum transitions. Phys. Rev. A 35, 4592 (1987)

    Article  ADS  Google Scholar 

  9. Knight, P.L., Lauder, M.A., Dalton, B.: Laser-induced continuum structure. J. Phys. Rep. 190, 1–61 (1990)

    Article  ADS  Google Scholar 

  10. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in a mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  11. Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from the two phonon process in quadratically coupled membrane. Phys. Rev. A 83, 023823 (2011)

    Article  ADS  Google Scholar 

  12. Safavi-Naeini, A.H., Mayer Alegre, T.P., Winger, M., Painter, O.: Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010)

    Article  ADS  Google Scholar 

  13. Lin, C.D., Chu, W.C.: Controlling atomic line shapes. Science 340, 694 (2013)

    Article  ADS  Google Scholar 

  14. Ott, C. et al.: Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716 (2013)

    Article  ADS  Google Scholar 

  15. Miroshnickenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  16. Fano, U: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 78, 1241866 (1961)

    Google Scholar 

  17. Xiao, S et al.: Talking through the continuum: New manifestations of Fano-Resonance phenomenology realized with mesoscopic nanostructures. Phys. 61, 348 (2013)

    MATH  Google Scholar 

  18. Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V.V., Van Dorpe, P., Nordlander, P., Maier, S.A.: Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 09, 1663 (2009)

    Article  ADS  Google Scholar 

  19. Ye, J., Wen, F., Sobhani, H., Lassiter, J.B., Van Dorpe, P., Nordlander, P., Halas, N.J.: Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. 12, 1660 (2012)

    Article  ADS  Google Scholar 

  20. Agarwal, G.S.: Quantum Optics. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  21. Qu, K, Agarwal, G.S.: Fano resonances and their control in optomechanics. Phys. Rev. A 87, 063813 (2013)

    Article  ADS  Google Scholar 

  22. Ali Abbassi, M., Mehrany, K.: The impact of Fano resonance on enhancing the cooling of a levitated nanosphere in the resolved sideband regime. arXiv:1707.05823v1

  23. Huang, S: Double electromagnetically induced transparency and narrowing of probe absorption in a ring cavity with nanomechanical mirrors. J. Phys. B: At. Mol. Opt. Phys. 47, 055504 (2014)

    Article  ADS  Google Scholar 

  24. Sohail, A., Zhang, Y., Usman, M., Yu, C.-S.: Controllable optomechanically induced transparency in coupled optomechanical systems. Eur. Phys. J. D 71, 103 (2017)

    Article  ADS  Google Scholar 

  25. Sohail, A., Zhang, Y., Zhang, J, Yu, C.-S.: Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Sci. Rep. 6, 28830 (2016)

    Article  ADS  Google Scholar 

  26. Hammerer, K., Srensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)

    Article  ADS  Google Scholar 

  27. Islam R.U., Akram, M. , Saif, F.J.: Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. Phys. B: At. Mol. Opt. Phys. 40, 1359 (2007)

    Article  ADS  Google Scholar 

  28. Ian, H., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. A 78, 013824 (2008)

    Article  ADS  Google Scholar 

  29. Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  30. Ritsch, H. et al.: Cavity optomechanics with a Bose-Einstein condensate. Rev. Mod. Phys. 85, 553 (2013)

    Article  ADS  Google Scholar 

  31. Tian, L., Zoller, P.: Coupled Ion-Nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004)

    Article  ADS  Google Scholar 

  32. Yasir, K.A., Ayub, M., Saif, F.: Exponential localization of moving-end mirror in optomechanical system. J. Mod. Opt. 61, 1318 (2014)

    Article  ADS  Google Scholar 

  33. Han, Y., Cheng, J., Zhou, L.: Electromagnetically induced transparency in a cavity optomechanical system with an atomic medium. J. Phys. B 44, 165505 (2011)

    Article  ADS  Google Scholar 

  34. Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B 48, 065502 (2015)

    Article  ADS  Google Scholar 

  35. Pirkkalainen, J.M. et al.: Nat. Comm. 6, 6981 (2014)

    Article  Google Scholar 

  36. Wang, H. et al.: Phys. Rev. A 90, 023817 (2014)

    Article  ADS  Google Scholar 

  37. Akram, M.J., Ghafoor, F., Khan, M.M., Saif, F.: Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity. Phys. Rev. A 95, 023810 (2017)

    Article  ADS  Google Scholar 

  38. Yasir, K.A., Liu, W.-M.: Controlled electromagnetically induced transparency and fano resonances in hybrid BEC-Optomechanics. Sci. Rep. 6, 22651 (2016)

    Article  ADS  Google Scholar 

  39. Kiesel, N., Blaser, F., Deli, U., Grass, D., Kaltenbaek, R., Aspelmeyer, M.: Cavity cooling of an optically levitated submicron particle. Proc. Nat. Acad. Sci. 110, 14180 (2013)

    Article  ADS  Google Scholar 

  40. Millen, J., Fonseca, P.Z.G., Mavrogordatos, T., Monteiro, T.S., Barker, P.F.: Cavity Cooling a single charged levitated nanosphere. Phys. Rev. Lett. 114, 123602 (2015)

    Article  ADS  Google Scholar 

  41. Chang, D.E., Regal, C.A., Papp, S.B., Wilson, D.J., Ye, J., Painter, O., Kimble, H.J., Zoller P.: Cavity optomechanics using an optically levitated nanosphere. Proc. Nat. Acad. Sci. 107, 1005 (2010)

    Article  ADS  Google Scholar 

  42. Romero-Isart, O., Pflanzer, A.C., Juan, M.L., Quidant, R., Kiesel, N., Aspelmeyer, M., Cirac, J.I.: Optically levitating dielectrics in the quantum regime: theory and protocols. Phys. Rev. A 83, 013803 (2011)

    Article  ADS  Google Scholar 

  43. Kaltenbaek, R., Hechenblaikner, G., Kiesel, N., RomeroIsart, O., Schwab, K., Johann, U., Aspelmeyer, M.: Macroscopic quantum resonators. Exp. Astron. 34, 123 (2012)

    Article  ADS  Google Scholar 

  44. Arvanitaki, A., Geraci, A.A.: Detecting high-frequency gravitational waves with optically levitated sensors. Phys. Rev. Lett. 110, 071105 (2013)

    Article  ADS  Google Scholar 

  45. Monteiro, T., Millen, J., Pender, G., Marquardt, F., Chang, D., Barker, P.: Dynamics of levitated nanospheres: towards the strong coupling regime. New J. Phys. 15, 015001 (2013)

    Article  ADS  Google Scholar 

  46. Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  47. Hensinger, W.K., Utami, D.W., Goan, H.S., Schwab, K., Monroe, C., Milburn, G.J.: ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A 72(R), 041405 (2005)

    Article  ADS  Google Scholar 

  48. Nie, W., Chen, A., Lan, Y.: Optical-response properties in levitated optomechanical systems beyond the low-excitation limit. Phys. Rev. A 93, 023841 (2016)

    Article  ADS  Google Scholar 

  49. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  50. Gröblacher, S., Hammerer, K., Vanner, M., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009)

    Article  ADS  Google Scholar 

  51. Nie, W., Lan, Y., Li, Y.: Zhu S.:Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction. Phys. Rev. A 88, 063849 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under Grant No.11775040 and 11375036, and the Xinghai Scholar Cultivation Plan. Amjad Sohail is supported by China Scholarship Council (CSC) for the Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Shui Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, A., Zhang, Y., Bary, G. et al. Tunable Optomechanically Induced Transparency and Fano Resonance in Optomechanical System with Levitated Nanosphere. Int J Theor Phys 57, 2814–2827 (2018). https://doi.org/10.1007/s10773-018-3801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3801-8

Keywords

Navigation