Skip to main content
Log in

Security of Continuous-Variable Quantum Key Distribution with Imperfect Phase Compensation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Phase compensation is a necessary procedure in practical application of continuous-variable quantum key distribution (CVQKD) for the reason of unavoidable phase drifts of quantum signals in quantum channel. However, the phase compensation may become imperfect in practical applications. The security of CVQKD scheme with imperfect phase compensation is investigated under realistic conditions of quantum channel and detector. In particular, a tight security bound to the phase noise of the imperfect phase compensation are derived for reverse reconciliation and realistic homodyne detection. Moreover, the phase noise is analyzed experimentally and a practical phase compensation procedure is applied to simulate the imperct processing. The simulation results show its coincidence to the security bound, and reveal the sensitivity of the security of the reverse reconciliation CVQKD protocol to the noise arising from imperfect phase compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Rev. Mod.Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  2. Grosshans, F., Grangier, P.: Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  3. Grosshan, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Nature 421, 238 (2003)

    Article  ADS  Google Scholar 

  4. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Phys. Rev. Lett. 93, 170504 (2004)

    Article  ADS  Google Scholar 

  5. Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: Phys. Rev. Lett. 95, 180503 (2005)

    Article  ADS  Google Scholar 

  6. Gong, L., Song, H., He, C., Liu, Y., Zhou, N.: Phys. Scripta 89, 035101 (2014)

    Article  ADS  Google Scholar 

  7. Song, H., Gong, L., He, Y., Zhou, N.: Acta Physica Sinica 61, 154206 (2012)

    Google Scholar 

  8. Bennett, C.H., Brassard, G.: Proceedings of IEEE International Conference Computers, System and Signal Processing, pp. 175–179. IEEE, New York (1984)

    Google Scholar 

  9. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  10. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  11. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E. , Diamanti, E., Debuisschert, T., Cerf, N.J., Tuallebrouri, R., McLaughlin, S.W., Grangier, P.: Phys. Rev. A 76, 042305 (2007)

    Article  ADS  Google Scholar 

  12. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Phys. Rev. A 76, 052323 (2007)

    Article  ADS  Google Scholar 

  13. Grosshans, F.: Phys. Rev. Lett. 94, 020504 (2005)

    Article  ADS  Google Scholar 

  14. Navascués, M., Acín, A.: Phys. Rev. Lett. 94, 020505 (2005)

    Article  ADS  Google Scholar 

  15. Lodewyck, J., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Phys. Rev. A 72, 050303(R) (2005)

    Article  ADS  Google Scholar 

  16. García-Patrón, R., Cerf, N.J.: Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  17. Navascués, M., Grosshans, F., Acín, A.: Phys. Rev. Lett. 97, 190502 (2006)

    Article  ADS  Google Scholar 

  18. Pirandola, S., Braunstein, S.L., Lloyd, S.: Phys. Rev. Lett. 101, 200504 (2008)

    Article  ADS  Google Scholar 

  19. Leverrier, A., Grangier, P.: Phys. Rev. Lett. 102, 180504 (2009)

    Article  ADS  Google Scholar 

  20. Leverrier, A., Grangier, P.: Phys. Rev. Lett. 106, 259902(E) (2011)

    Article  ADS  MATH  Google Scholar 

  21. Renner, R., Cirac, J.I.: Phys. Rev. Lett. 102, 110504 (2009)

    Article  ADS  Google Scholar 

  22. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Phys. Rev. Lett. 110, 030502 (2013)

    Article  ADS  Google Scholar 

  23. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Phys. Rev. Lett. 109, 100502 (2013)

    Article  Google Scholar 

  24. Jouguet, P., Kunz-Jacques, S., Diamanti, E., Leverrier, A.: Phys. Rev. A 86, 032309 (2012)

    Article  ADS  Google Scholar 

  25. García-Patrón, R., Cerf, N.J.: Phys. Rev. Lett. 102, 130501 (2009)

    Article  ADS  Google Scholar 

  26. Shen, Y., Yang, J., Guo, H.: J. Phys. B 42, 235506 (2009)

    Article  ADS  Google Scholar 

  27. Usenko, V.C., Filip, R.: Phys. Rev. A 81, 022318 (2010)

    Article  ADS  Google Scholar 

  28. Shen, Y., Peng, X., Yang, J., Guo, H.: Phys. Rev. A 83, 052304 (2011)

    Article  ADS  Google Scholar 

  29. Weedbrook, C., Pirandola, S., Lloyd, S., Ralph, T.C.: Phys. Rev. Lett 105, 110501 (2010)

    Article  ADS  Google Scholar 

  30. Huang, P., He, G., Zeng, G.: Int. J. Theor. Phys. 52, 1572–1582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  32. Lo, H.-K., Curty, M., Qi, B.: Phys. Rev. Letts. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  33. Holevo, A.S.: Probl. Inf. Transm. 9, 177 (1973)

    MathSciNet  MATH  Google Scholar 

  34. Huang, D., Huang, P., Lin, D., Zeng, G.: Nature Commun. (2014). (manuscript submitted)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 61170228 and No. 61332019), China Postdoctoral Science Foundation (Grant No. 2013M540365), and Shanghai Jiao Tong University Postdoctoral Research Foundation (No. AE606203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Lin, Dk., Huang, D. et al. Security of Continuous-Variable Quantum Key Distribution with Imperfect Phase Compensation. Int J Theor Phys 54, 2613–2622 (2015). https://doi.org/10.1007/s10773-014-2492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2492-z

Keywords

Navigation